Sunday, June 04, 2023

Forget The Math And Just Enjoy The Mind-Bending Perspectival Ingenuity Of Twistor Space

wikipedia  |  In theoretical physics, twistor theory was proposed by Roger Penrose in 1967[1] as a possible path[2] to quantum gravity and has evolved into a widely studied branch of theoretical and mathematical physics. Penrose's idea was that twistor space should be the basic arena for physics from which space-time itself should emerge. It has led to powerful mathematical tools that have applications to differential and integral geometry, nonlinear differential equations and representation theory, and in physics to general relativity, quantum field theory, and the theory of scattering amplitudes. Twistor theory arose in the context of the rapidly expanding mathematical developments in Einstein's theory of general relativity in the late 1950s and in the 1960s and carries a number of influences from that period. In particular, Roger Penrose has credited Ivor Robinson as an important early influence in the development of twistor theory, through his construction of so-called Robinson congruences.[3]

Mathematically, projective twistor space is a 3-dimensional complex manifold, complex projective 3-space . It has the physical interpretation of the space of massless particles with spin. It is the projectivisation of a 4-dimensional complex vector space, non-projective twistor space with a Hermitian form of signature (2,2) and a holomorphic volume form. This can be most naturally understood as the space of chiral (Weyl) spinors for the conformal group of Minkowski space; it is the fundamental representation of the spin group of the conformal group. This definition can be extended to arbitrary dimensions except that beyond dimension four, one defines projective twistor space to be the space of projective pure spinors for the conformal group.[4][5]

In its original form, twistor theory encodes physical fields on Minkowski space into complex analytic objects on twistor space via the Penrose transform. This is especially natural for massless fields of arbitrary spin. In the first instance these are obtained via contour integral formulae in terms of free holomorphic functions on regions in twistor space. The holomorphic twistor functions that give rise to solutions to the massless field equations can be more deeply understood as Čech representatives of analytic cohomology classes on regions in . These correspondences have been extended to certain nonlinear fields, including self-dual gravity in Penrose's nonlinear graviton construction[6] and self-dual Yang–Mills fields in the so-called Ward construction;[7] the former gives rise to deformations of the underlying complex structure of regions in , and the latter to certain holomorphic vector bundles over regions in . These constructions have had wide applications, including inter alia the theory of integrable systems.[8][9][10]

The self-duality condition is a major limitation for incorporating the full nonlinearities of physical theories, although it does suffice for Yang–Mills–Higgs monopoles and instantons (see ADHM construction).[11] An early attempt to overcome this restriction was the introduction of ambitwistors by Edward Witten[12] and by Isenberg, Yasskin & Green.[13] Ambitwistor space is the space of complexified light rays or massless particles and can be regarded as a complexification or cotangent bundle of the original twistor description. These apply to general fields but the field equations are no longer so simply expressed.

Twistorial formulae for interactions beyond the self-dual sector first arose from Witten's twistor string theory.[14] This is a quantum theory of holomorphic maps of a Riemann surface into twistor space. It gave rise to the remarkably compact RSV (Roiban, Spradlin & Volovich) formulae for tree-level S-matrices of Yang–Mills theories,[15] but its gravity degrees of freedom gave rise to a version of conformal supergravity limiting its applicability; conformal gravity is an unphysical theory containing ghosts, but its interactions are combined with those of Yang–Mills theory in loop amplitudes calculated via twistor string theory.[16]

Despite its shortcomings, twistor string theory led to rapid developments in the study of scattering amplitudes. One was the so-called MHV formalism[17] loosely based on disconnected strings, but was given a more basic foundation in terms of a twistor action for full Yang–Mills theory in twistor space.[18] Another key development was the introduction of BCFW recursion.[19] This has a natural formulation in twistor space[20][21] that in turn led to remarkable formulations of scattering amplitudes in terms of Grassmann integral formulae[22][23] and polytopes.[24] These ideas have evolved more recently into the positive Grassmannian[25] and amplituhedron.

Twistor string theory was extended first by generalising the RSV Yang–Mills amplitude formula, and then by finding the underlying string theory. The extension to gravity was given by Cachazo & Skinner,[26] and formulated as a twistor string theory for maximal supergravity by David Skinner.[27] Analogous formulae were then found in all dimensions by Cachazo, He & Yuan for Yang–Mills theory and gravity[28] and subsequently for a variety of other theories.[29] They were then understood as string theories in ambitwistor space by Mason & Skinner[30] in a general framework that includes the original twistor string and extends to give a number of new models and formulae.[31][32][33] As string theories they have the same critical dimensions as conventional string theory; for example the type II supersymmetric versions are critical in ten dimensions and are equivalent to the full field theory of type II supergravities in ten dimensions (this is distinct from conventional string theories that also have a further infinite hierarchy of massive higher spin states that provide an ultraviolet completion). They extend to give formulae for loop amplitudes[34][35] and can be defined on curved backgrounds.[36]

 

0 comments:

Master Arbitrageur Nancy Pelosi Is At It Again....,

🇺🇸TUCKER: HOW DID NANCY PELOSI GET SO RICH? Tucker: "I have no clue at all how Nancy Pelosi is just so rich or how her stock picks ar...