wikipedia | Smythies[27] defines the combination problem, also known as the subjective unity of perception, as "How do the brain mechanisms actually construct the phenomenal object?". Revonsuo[1] equates this to "consciousness-related binding", emphasizing the entailment of a phenomenal aspect. As Revonsuo explores in 2006,[28] there are nuances of difference beyond the basic BP1:BP2 division. Smythies speaks of constructing a phenomenal object ("local unity" for Revonsuo) but philosophers such as Descartes, Leibniz, Kant and James (see Brook and Raymont[29]) have typically been concerned with the broader unity of a phenomenal experience ("global unity" for Revonsuo) – which, as Bayne[30] illustrates may involve features as diverse as seeing a book, hearing a tune and feeling an emotion. Further discussion will focus on this more general problem of how sensory data that may have been segregated into, for instance, "blue square" and "yellow circle" are to be re-combined into a single phenomenal experience of a blue square next to a yellow circle, plus all other features of their context. There is a wide range of views on just how real this "unity" is, but the existence of medical conditions in which it appears to be subjectively impaired, or at least restricted, suggests that it is not entirely illusory.[31]
There are many neurobiological theories about the subjective unity of perception. Different visual features such as color, size, shape, and motion are computed by largely distinct neural circuits but we experience an integrated whole. The different visual features interact with each other in various ways. For example, shape discrimination of objects is strongly affected by orientation but only slightly affected by object size.[32] Some theories suggest that global perception of the integrated whole involves higher order visual areas.[33] There is also evidence that the posterior parietal cortex is responsible for perceptual scene segmentation and organization.[34] Bodies facing each other are processed as a single unit and there is increased coupling of the extrastriate body area (EBA) and the posterior superior temporal sulcus (pSTS) when bodies are facing each other.[35] This suggests that the brain is biased towards grouping humans in twos or dyads.[36]
Dennett[40] has proposed that our sense that our experiences are single events is illusory and that, instead, at any one time there are "multiple drafts" of sensory patterns at multiple sites. Each would only cover a fragment of what we think we experience. Arguably, Dennett is claiming that consciousness is not unified and there is no phenomenal binding problem. Most philosophers have difficulty with this position (see Bayne[30]) but some physiologists agree with it. In particular, the demonstration of perceptual asynchrony in psychophysical experiments by Moutoussis and Zeki,[48][49] when color is perceived before orientation of lines and before motion by 40 and 80 ms, respectively, constitutes an argument that, over these very short time periods, different attributes are consciously perceived at different times, leading to the view that at least over these brief periods of time after visual stimulation, different events are not bound to each other, leading to the view of a disunity of consciousness,[50] at least over these brief time intervals. Dennett's view might be in keeping with evidence from recall experiments and change blindness purporting to show that our experiences are much less rich than we sense them to be – what has been called the Grand Illusion.[51] However, few, if any, other authors suggest the existence of multiple partial "drafts". Moreover, also on the basis of recall experiments, Lamme[52] has challenged the idea that richness is illusory, emphasizing that phenomenal content cannot be equated with content to which there is cognitive access.
Dennett does not tie drafts to biophysical events. Multiple sites of causal convergence are invoked in specific biophysical terms by Edwards[53] and Sevush.[54] In this view the sensory signals to be combined in phenomenal experience are available, in full, at each of multiple sites. To avoid non-causal combination each site/event is placed within an individual neuronal dendritic tree. The advantage is that "compresence" is invoked just where convergence occurs neuro-anatomically. The disadvantage, as for Dennett, is the counter-intuitive concept of multiple "copies" of experience. The precise nature of an experiential event or "occasion", even if local, also remains uncertain.
The majority of theoretical frameworks for the unified richness of phenomenal experience adhere to the intuitive idea that experience exists as a single copy, and draw on "functional" descriptions of distributed networks of cells. Baars[55] has suggested that certain signals, encoding what we experience, enter a "Global Workspace" within which they are "broadcast" to many sites in the cortex for parallel processing. Dehaene, Changeux and colleagues[56] have developed a detailed neuro-anatomical version of such a workspace. Tononi and colleagues[57] have suggested that the level of richness of an experience is determined by the narrowest information interface "bottleneck" in the largest sub-network or "complex" that acts as an integrated functional unit. Lamme[52] has suggested that networks supporting reciprocal signaling rather than those merely involved in feed-forward signaling support experience. Edelman and colleagues have also emphasized the importance of re-entrant signaling.[58] Cleeremans[59] emphasizes meta-representation as the functional signature of signals contributing to consciousness.
In general, such network-based theories are not explicitly theories of how consciousness is unified, or "bound" but rather theories of functional domains within which signals contribute to unified conscious experience. A concern about functional domains is what Rosenberg[60] has called the boundary problem; it is hard to find a unique account of what is to be included and what excluded. Nevertheless, this is, if anything is, the consensus approach.
Within the network context, a role for synchrony has been invoked as a solution to the phenomenal binding problem as well as the computational one. In his book, The Astonishing Hypothesis,[61] Crick appears to be offering a solution to BP2 as much as BP1. Even von der Malsburg,[62] introduces detailed computational arguments about object feature binding with remarks about a "psychological moment". The Singer group[63] also appear to be interested as much in the role of synchrony in phenomenal awareness as in computational segregation.
The apparent incompatibility of using synchrony to both segregate and unify might be explained by sequential roles. However, Merker[20] points out what appears to be a contradiction in attempts to solve the subjective unity of perception in terms of a functional (effectively meaning computational) rather than a local biophysical, domain, in the context of synchrony.
Functional arguments for a role for synchrony are in fact underpinned by analysis of local biophysical events. However, Merker[20] points out that the explanatory work is done by the downstream integration of synchronized signals in post-synaptic neurons: "It is, however, by no means clear what is to be understood by 'binding by synchrony' other than the threshold advantage conferred by synchrony at, and only at, sites of axonal convergence onto single dendritic trees..." In other words, although synchrony is proposed as a way of explaining binding on a distributed, rather than a convergent, basis the justification rests on what happens at convergence. Signals for two features are proposed as bound by synchrony because synchrony effects downstream convergent interaction. Any theory of phenomenal binding based on this sort of computational function would seem to follow the same principle. The phenomenality would entail convergence, if the computational function does.
The assumption in many of the quoted models suggest that computational and phenomenal events, at least at some point in the sequence of events, parallel each other in some way. The difficulty remains in identifying what that way might be. Merker's[20] analysis suggests that either (1) both computational and phenomenal aspects of binding are determined by convergence of signals on neuronal dendritic trees, or (2) that our intuitive ideas about the need for "binding" in a "holding together" sense in both computational and phenomenal contexts are misconceived. We may be looking for something extra that is not needed. Merker, for instance, argues that the homotopic connectivity of sensory pathways does the necessary work.
0 comments:
Post a Comment