phys.org | An
ideological dispute is taking place in biology. And it's about a big
topic that's central to everything: heredity. In his epoch-making book
On the Origin of Species of 1859, Darwin wrote of the reigning ignorance
about how differences between individuals come about. It was only with
'modern evolutionary synthesis' in the 1940s that people became
convinced that heredity functions through genetics – in other words,
that the characteristics of living creatures are passed on to the next
generations through their genetic substance, DNA.
This
perspective was helpful in providing a focus for research in the ensuing
decades, which brought about extraordinary discoveries. As a result,
many aspects of the form and function of living creatures can now be
explained. But already in the 1950s, different observations called into
question the seemingly exclusive control of the genes. For example,
maize kernels can have different colours even if their DNA sequence is
identical.
Plants remember aridity
Further investigations brought to light the fact that when
individuals with identical genetic material have a different outward
appearance, this can be traced back to different degrees of activity on
the part of the genes. Whether a particular section of DNA is active or
not – i.e., whether it is read – depends to a decisive degree on how
densely packed the DNA is.
This packing density is influenced by several so-called epigenetic
mechanisms. They form a complex machinery that can affix or detach tiny
chemical attachments to the DNA. Here, the rule applies that the tighter
packed the DNA, the more difficult it is to read – and this means that a
particular gene will be more inactive.
Living creatures can adjust to a volatile environment by steering
their epigenetic mechanisms. In this manner, for example, the epigenetic
machinery can ensure that plants can deal better with a hot or arid
climate if it at some point they already had to live through a similar
situation. So in this sense, the epigenetic markings in the genetic
material form a kind of 'stress memory' of the plants. This much is
today a matter of consensus among biologists.
Doubts on heredity over generations
Several studies, however, suggest that the descendants of stressed
plants are also better prepared against the dangers already faced by
their ancestors. "However, these studies are a matter of controversial
debate," says Ueli Grossniklaus, the director of the Department of Plant
and Microbial Biology at the University of Zurich. Like many other
epigeneticists who are involved in deciphering these mechanisms, he
believes that, "since the evidence is patchy, we can't yet say to what
degree acquired characteristics can be transmitted in stable form over
several generations." So it still remains to be proven whether
epigenetics actually brings organisms long-lasting advantages and thus
plays a role in evolution. It's an attractive idea, thinks Grossniklaus,
but it's still to be demonstrated.
It's not just in plants that results on the heredity of epigenetic
markings are causing a stir – the same is true in mice. In order to
investigate the possible long-term effects of severe childhood trauma,
for example, the research group led by Isabelle Mansuy, a professor of
neuro-epigenetics at the University of Zurich and ETH Zurich, has been
taking mouse offspring away from their mothers for three hours each day,
just a few days after being born.