Showing posts with label microbiome. Show all posts
Showing posts with label microbiome. Show all posts

Wednesday, May 16, 2018

In Bourne Legacy A 1.5% Gain Of Mitochondrial Function Yielded Super Soldiers


thescientist |  Since the 1970s, when researchers turned up similarities between DNA in eukaryotes’ mitochondria and bacterial genomes, scientists have suspected that the organelles descended from symbionts that took up residence within larger cells. A diverse class of bacteria called Alphaproteobacteria soon emerged as a likely candidate for the evolutionary origins of mitochondria. 

But a new analysis, published today (April 25) in Nature, suggests that mitochondria are at best distant cousins to known alphaproteobacteria lineages, and not descendents as previously thought.
“We are still left hungry for the ancestor of mitochondria,” says Puri Lopez-Garcia, a biologist at the University of Paris-South who was not involved in the study.

While it’s generally agreed that Alphaproteobacteria includes the closest bacterial relatives of mitochondria, that relationship doesn’t reveal much about how mitochondrial ancestors made a living or how they made the jump to acting as organelles. That’s because “Alphaproteobacteria is a particularly diverse group of organisms in terms of kinds of metabolism,” Lopez-Garcia explains. 

“You find more or less everything in there.” Some studies have found genetic similarities between mitochondria and an order of alphaproteobacterial symbionts known as Rickettsiales, but other, free-living candidates have also emerged.

The question of where on the alphaproteobacteria family tree the mitochondrial ancestor fell has pestered study coauthor Thijs Ettema throughout his scientific career. “Now, with all the available data from all these new lineages in all sorts of environments, we thought we should just do one bold approach and see where this ends up,” says Ettema, an evolutionary biologist at Uppsala University in Sweden.

Much of the genomic data he and colleagues used in their analysis came from the Tara Oceans dataset, which includes metagenomic sequences from microbes in ocean waters sampled from various depths. “For reasons that are not extremely clear . . . it seems that oceanic waters are extremely enriched for Alphaproteobacteria, and not just one species—it seems to be a whole array,” Ettema explains. The datasets were “good and deep enough to make an effort to reconstruct near-complete genomes.”

Thursday, April 19, 2018

Viruses Modulate the Function and Evolution of All Living Things



NYTimes |  High in the Sierra Nevada mountains of Spain, an international team of researchers set out four buckets to gather a shower of viruses falling from the sky.

Scientists have surmised there is a stream of viruses circling the planet, above the planet’s weather systems but below the level of airline travel. Very little is known about this realm, and that’s why the number of deposited viruses stunned the team in Spain. Each day, they calculated, some 800 million viruses cascade onto every square meter of the planet.

Most of the globe-trotting viruses are swept into the air by sea spray, and lesser numbers arrive in dust storms.

“Unimpeded by friction with the surface of the Earth, you can travel great distances, and so intercontinental travel is quite easy” for viruses, said Curtis Suttle, a marine virologist at the University of British Columbia. “It wouldn’t be unusual to find things swept up in Africa being deposited in North America.”

The study by Dr. Suttle and his colleagues, published earlier this year in the International Society of Microbial Ecology Journal, was the first to count the number of viruses falling onto the planet. The research, though, is not designed to study influenza or other illnesses, but to get a better sense of the “virosphere,” the world of viruses on the planet.

Generally it’s assumed these viruses originate on the planet and are swept upward, but some researchers theorize that viruses actually may originate in the atmosphere. (There is a small group of researchers who believe viruses may even have come here from outer space, an idea known as panspermia.)

Whatever the case, viruses are the most abundant entities on the planet by far. While Dr. Suttle’s team found hundreds of millions of viruses in a square meter, they counted tens of millions of bacteria in the same space.

Mostly thought of as infectious agents, viruses are much more than that. It’s hard to overstate the central role that viruses play in the world: They’re essential to everything from our immune system to our gut microbiome, to the ecosystems on land and sea, to climate regulation and the evolution of all species. Viruses contain a vast diverse array of unknown genes — and spread them to other species.

Last year, three experts called for a new initiative to better understand viral ecology, especially as the planet changes. “Viruses modulate the function and evolution of all living things,” wrote Matthew B. Sullivan of Ohio State, Joshua Weitz of Georgia Tech, and Steven W. Wilhelm of the University of Tennessee. “But to what extent remains a mystery.”

Thursday, October 08, 2015

N-1 a literal diseased state?


biologydirect |  The variety of parasites that can affect host behavior suggests that the phenomena of parasitic host control might be more common in nature than currently established and could have been overlooked in humans. This warrants a detailed search for parasitic organisms that affect human behavior. One approach to search for “invisible” microbes that influence behavior is by comparing the microbiomes of control subjects and humans that consistently engage in irrational ritualistic behavioral activities, which contribute to the spreading of parasites and infections.

The modern anthropological view on religion is that it is a cultural meme that replicates through social communication [44]. While the meme itself may influence behavior, religious icons are known to be vectors of infectious diseases [45]. Most major religions have rituals that are likely to promote the transmission of infections. This includes circumcision [46], Christian common communion chalice [46], the Hindu ‘side-roll’[46] and Islamic ritual ablution [46] as well as the Hajj congregation in Mecca [47]. For example, the latter is specifically associated with outbreaks of meningococcal disease [48].

Also many religions are centered on sacred relics that are worshiped and frequently kissed by multiple people and thereby can act as vessels for microbial transmission. Crosses, icons, Bible covers are kissed in some denominations of the Christian tradition, the Black Stone (the eastern cornerstone of the Kaaba) is a relic that is kissed by millions of Muslims, kissing of the Wailing Wall is a religious tradition for the Jewish. It is unlikely, but possible that the rejection of condom use, vaccination and use of antibiotics present in some religious cultures, as well as the sacred status of specific domestic animals (possible definitive hosts to the parasites) may also be related to microbial host control. Finally, it has been noted that many parasites eliminate their hosts reproductive potential as they channel all available resources to maximize their own reproductive success [18]. Coincidentally celibacy is commonplace for holy individuals that are most devoted to their faith such as monks or nuns.

Thus it is possible that various religious practices could represent biomemes: manifestations of a symbiosis between informational memes [54] and biological organisms. This concept is somewhat similar to the fictional midichlorians of the Jedi Order from the popular series “Star Wars”[55].

Two particular parts of the human body seem to be most promising for the search of  behavior-altering parasites. First of all, the human gut microbiome may be of interest in light of the microbiome-gut-brain axis concept. Another promising area to search for behavioraltering parasites is the human brain. Several organisms that can bypass the mammalian blood–brain barrier and produce a latent infection without obvious symptoms are currently known. In mice with latent toxoplasmosis, Toxoplasma gondii cysts can be found in various regions of the brain, especially in the olfactory bulb, the entorhinal, somatosensory, motor and orbital, frontal association and visual cortices, the hippocampus and the amygdala [56]. In humans the brain also appears to be an important site for Toxoplasma gondii cyst formation and the parasite is capable of infecting a variety of brain cells, including astrocytes and neurons [57-59].

Saturday, July 11, 2015

the transhuman jump will not be wearable or reversible...,


MIT |  Sturdy, wearable skins that transform hostile environments into friendlier ones are among the projects developed by Media Lab’s Mediated Matter group, headed by Associate Professor Neri Oxman PhD ’10.

Oxman, who earned her PhD in design computation, leads her Mediated Matter group through explorations of “Nature-inspired Design and Design-inspired Nature” using the tools of computational design, digital fabrication, materials science, and synthetic biology. Many projects rely on advanced 3D printing technologies.

Four artifacts that represent this intersection of 3D printing and synthetic biology were unveiled in Germany last fall in an exhibit of Wanderers: An Astrobiological Exploration, a collaboration with German designers Christoph Bader and Dominik Kolb.

The wearables, printed with Stratasys multi-material 3D printing technology, are designed to create the necessities of human life in space environments. Capillaries are expected to hold synthetically engineered microorganisms that could produce oxygen, light, food, and biofuels. Mediated Matter members led by Will Patrick and Sunanda Sharma are working on embedding living matter in the form of engineered bacteria inside the 3D structures.

“The future of wearables lies in designing augmented extensions to our own bodies, that will blur the boundary between the environment and ourselves,”

Friday, April 24, 2015

scientists discover LEM


telegraph |  A protein which ‘turbo-charges’ the immune system so that it can fight off any cancer or virus has been discovered by scientists. 

In a breakthrough described as a ‘game-changer’ for cancer treatment, researchers at Imperial College found a previously unknown molecule which boosts the body’s ability to fight off chronic illnesses.
Scientists at Imperial College London, who led the study, are now developing a gene therapy based on the protein and hope to begin human trials in three years.
“This is exciting because we have found a completely different way to use the immune system to fight cancer,” said Professor Philip Ashton-Rickardt, from the Section of Immunobiology in the Department of Medicine at Imperial, who led the study.


“It could be a game-changer for treating a number of different cancers and viruses.

“This is a completely unknown protein. Nobody had ever seen it before or was even aware that it existed. It looks and acts like no other protein.”

The protein – named lymphocyte expansion molecule, or LEM, promotes the spread of cancer killing ‘T cells’ by generating large amounts of energy.

Normally when the immune system detects cancer it goes into overdrive trying to fight the disease, flooding the body with T cells. But it quickly runs out of steam.

inflammatory bowel and ulcerative colitis caused by identified microbe-host interaction


bmj.com |  Objectives Dysbiosis of the intestinal microbiota is associated with Crohn's disease (CD). Functional evidence for a causal role of bacteria in the development of chronic small intestinal inflammation is lacking. Similar to human pathology, TNFdeltaARE mice develop a tumour necrosis factor (TNF)-driven CD-like transmural inflammation with predominant ileal involvement. 

Design Heterozygous TNFdeltaARE mice and wildtype (WT) littermates were housed under conventional (CONV), specific pathogen-free (SPF) and germ-free (GF) conditions. Microbial communities were analysed by high-throughput 16S ribosomal RNA gene sequencing. Metaproteomes were measured using LC-MS. Temporal and spatial resolution of disease development was followed after antibiotic treatment and transfer of microbial communities into GF mice. Granulocyte infiltration and Paneth cell function was assessed by immunofluorescence and gene expression analysis. 

Results GF-TNFdeltaARE mice were free of inflammation in the gut and antibiotic treatment of CONV-TNFdeltaARE mice attenuated ileitis but not colitis, demonstrating that disease severity and location are microbiota-dependent. SPF-TNFdeltaARE mice developed distinct ileitis-phenotypes associated with gradual loss of antimicrobial defence. 16S analysis and metaproteomics revealed specific compositional and functional alterations of bacterial communities in inflamed mice. Transplantation of disease-associated but not healthy microbiota transmitted CD-like ileitis to GF-TNFdeltaARE recipients and triggered loss of lysozyme and cryptdin-2 expression. Monoassociation of GF-TNFdeltaARE mice with the human CD-related Escherichia coli LF82 did not induce ileitis. 

Conclusions We provide clear experimental evidence for the causal role of gut bacterial dysbiosis in the development of chronic ileal inflammation with subsequent failure of Paneth cell function.

Butt then we told you this five years ago....,

Thursday, January 29, 2015

sociogenomics...,


thescientist |  Eusocial insects are among the most successful living creatures on Earth. Found in terrestrial ecosystems across the globe (on every continent except Antarctica), the world’s ants alone weigh more than all vertebrates put together. Bees are key pollinators of major crops as well as many other ecologically important plants. Termites construct thermoregulating homes that can dominate the landscape, and that are inspiring new energy-efficient skyscraper designs. The organization and collective decision making of eusocial insects is even yielding new insights into human behavior and what it means to be part of a society. But one of the biggest unanswered questions in our understanding of these complex insect groups is how a single genome can produce such diverse and contrasting physical and behavioral forms, from egg layers, provisioners, and caretakers to soldiers.

In a eusocial colony, reproduction is dominated by one or a few individuals adapted to egg laying, 
while their offspring—colony workers—display physical and behavioral adaptations that help them perform their subordinate roles. These phenotypic adaptations can be extreme. A leafcutter ant queen is 10 times larger than her smallest workers, for example.  (See photograph below.) And some carpenter ant species have evolved a “kamikaze” caste, born with a self-destruct button that causes the insect to explode upon colony attack, killing itself and covering the invading animals in toxic chemicals. Remarkably, differences in the behavior and morphology of insect castes are usually generated through differences in the expression of identical sets of genes. (There are a few cases of genetically determined castes, but this is the exception, not the rule.)

We are now entering a new era of research into eusocial insects. For the first time, scientists are investigating the molecules that underlie eusocial behavior at a depth that was previously unimaginable. New, affordable sequencing technologies enable scientists to examine how genes across the entire genome are regulated to generate different caste phenotypes, the roles of DNA methylation and microRNAs in this differential expression, and what proteins are synthesized as a result. This burgeoning area of research, dubbed “sociogenomics” in 2005 by Gene E. Robinson,1 is revolutionizing our understanding of the evolution of eusociality from a solitary wasp-like ancestor to the million-strong colonies we see today. New work is yielding insights into how genomes interact dynamically with the physical and social environment to produce highly adapted, specialized castes with remarkable phenotypic innovations. These findings are, in turn, illuminating the importance of gene regulation and epigenetics in controlling behavioral plasticity across the animal kingdom.

Fuck Robert Kagan And Would He Please Now Just Go Quietly Burn In Hell?

politico | The Washington Post on Friday announced it will no longer endorse presidential candidates, breaking decades of tradition in a...