IEEE | We don’t need nuclear power, coal, or biofuels. We can get 100 percent of our energy from wind, water, and solar (WWS) power. And we can do it today—efficiently, reliably, safely, sustainably, and economically.
We can get to this WWS world by simply building a lot of new systems for the production, transmission, and use of energy. One scenario that Stanford engineering professor Mark Jacobson and I developed, projecting to 2030, includes:
- 3.8 million wind turbines, 5 megawatts each, supplying 50 percent of the projected total global power demand
- 49 000 solar thermal power plants, 300 MW each, supplying 20 percent
- 40 000 solar photovoltaic (PV) power plants supplying 14 percent
- 1.7 billion rooftop PV systems, 3 kilowatts each, supplying 6 percent
- 5350 geothermal power plants, 100 MW each, supplying 4 percent
- 900 hydroelectric power plants, 1300 MW each, of which 70 percent are already in place, supplying 4 percent
- 720 000 ocean-wave devices, 0.75 MW each, supplying 1 percent
- 490 000 tidal turbines, 1 MW each, supplying 1 percent.
We also need to greatly expand the transmission infrastructure in order to create the large supergrids that will span many regions and often several countries and even continents. And we need to expand production of battery-electric and hydrogen fuel cell vehicles, ships that run on hydrogen fuel cell and battery combinations, liquefied hydrogen aircraft, air- and ground-source heat pumps, electric resistance heating, and hydrogen for high-temperature processes.
To make a WWS world work, we also need to reduce demand. Reducing demand by improving the efficiency of devices that use power, or substituting low-energy activities and technologies for high-energy ones—for example, telecommuting instead of driving—directly reduces the pressure to produce energy.

Because a massive deployment of WWS technologies requires an upgraded and expanded transmission grid and the smart integration of the grid with battery-electric vehicles and hydrogen fuel cell vehicles—using both types of these vehicles for distributed electricity storage—governments need to carefully fund, plan, and manage a long-term, large-scale restructuring of the electricity transmission and distribution system. In much of the world, we’ll need international cooperation in planning and building supergrids that span across multiple countries, because many individual countries just aren’t big enough to permit enough geographic dispersion of generators to mitigate local variability in wind and solar intensity. The Desertec project proposes a supergrid to link Europe and North Africa, and 10 northern European countries are beginning to plan a North Sea supergrid for offshore wind power. Africa, Asia and Southeast Asia, Australia/Tasmania, China, the Middle East, North America, South America, and Russia will need supergrids as well.
Although this is an enormous undertaking, it does not need to be done overnight, and there are plenty of examples in recent history of successful large-scale infrastructure, industrial, and engineering projects. Fist tap Arnach.