Thursday, December 14, 2017

Backpropagation: The Beginning of a Revolution or the End of One?


technologyreview |  I’m standing in what is soon to be the center of the world, or is perhaps just a very large room on the seventh floor of a gleaming tower in downtown Toronto. Showing me around is Jordan Jacobs, who cofounded this place: the nascent Vector Institute, which opens its doors this fall and which is aiming to become the global epicenter of artificial intelligence.

We’re in Toronto because Geoffrey Hinton is in Toronto, and Geoffrey Hinton is the father of “deep learning,” the technique behind the current excitement about AI. “In 30 years we’re going to look back and say Geoff is Einstein—of AI, deep learning, the thing that we’re calling AI,” Jacobs says. Of the researchers at the top of the field of deep learning, Hinton has more citations than the next three combined. His students and postdocs have gone on to run the AI labs at Apple, Facebook, and OpenAI; Hinton himself is a lead scientist on the Google Brain AI team. In fact, nearly every achievement in the last decade of AI—in translation, speech recognition, image recognition, and game playing—traces in some way back to Hinton’s work.

The Vector Institute, this monument to the ascent of ­Hinton’s ideas, is a research center where companies from around the U.S. and Canada—like Google, and Uber, and Nvidia—will sponsor efforts to commercialize AI technologies. Money has poured in faster than Jacobs could ask for it; two of his cofounders surveyed companies in the Toronto area, and the demand for AI experts ended up being 10 times what Canada produces every year. Vector is in a sense ground zero for the now-worldwide attempt to mobilize around deep learning: to cash in on the technique, to teach it, to refine and apply it. Data centers are being built, towers are being filled with startups, a whole generation of students is going into the field.

The impression you get standing on the Vector floor, bare and echoey and about to be filled, is that you’re at the beginning of something. But the peculiar thing about deep learning is just how old its key ideas are. Hinton’s breakthrough paper, with colleagues David Rumelhart and Ronald Williams, was published in 1986. The paper elaborated on a technique called backpropagation, or backprop for short. Backprop, in the words of Jon Cohen, a computational psychologist at Princeton, is “what all of deep learning is based on—literally everything.”

When you boil it down, AI today is deep learning, and deep learning is backprop—which is amazing, considering that backprop is more than 30 years old. It’s worth understanding how that happened—how a technique could lie in wait for so long and then cause such an explosion—because once you understand the story of backprop, you’ll start to understand the current moment in AI, and in particular the fact that maybe we’re not actually at the beginning of a revolution. Maybe we’re at the end of one.


0 comments:

Fuck Robert Kagan And Would He Please Now Just Go Quietly Burn In Hell?

politico | The Washington Post on Friday announced it will no longer endorse presidential candidates, breaking decades of tradition in a...