Monday, September 03, 2018

Does Music Link Space and Time in Brain Dynamics?

opentheory |  I think all neuroscientists, all philosophers, all psychologists, and all psychiatrists should basically drop whatever they’re doing and learn Selen Atasoy’s “connectome-specific harmonic wave” (CSHW) framework. It’s going to be the backbone of how we understand the brain and mind in the future, and it’s basically where predictive coding was in 2011, or where blockchain was in 2009. Which is to say, it’s destined for great things and this is a really good time to get into it.
I described CSHW in my last post as:
Selen Atasoy’s Connectome-Specific Harmonic Waves (CSHW) is a new method for interpreting neuroimaging which (unlike conventional approaches) may plausibly measure things directly relevant to phenomenology. Essentially, it’s a method for combining fMRI/DTI/MRI to calculate a brain’s intrinsic ‘eigenvalues’, or the neural frequencies which naturally resonate in a given brain, as well as the way the brain is currently distributing energy (periodic neural activity) between these eigenvalues.
This post is going to talk a little more about how CSHW works, why it’s so powerful, and what sorts of things we could use it for.

CSHW: the basics
All periodic systems have natural modes— frequencies they ‘like’ to resonate at. A tuning fork is a very simple example of this: regardless of how it’s hit, most of the vibration energy quickly collapses to one frequency- the natural resonant frequency of the fork.

All musical instruments work on this principle; when you change the fingering on a trumpet or flute, you’re changing the natural resonances of the instrument. 

CSHW’s big insight is that brains have these natural resonances too, although they differ slightly from brain to brain. And instead of some external musician choosing which notes (natural resonances) to play, the brain sort of ‘tunes itself,’ based on internal dynamics, external stimuli, and context.

The beauty of CSHW is that it’s a quantitative model, not just loose metaphor: neural activation and inhibition travel as an oscillating wave with a characteristic wave propagation pattern, which we can reasonably estimate, and the substrate in which they propagate is the the brain’s connectome (map of neural connections), which we can also reasonably estimate.