evolution and function of de novo originated genes |
biomedcentral | Background New gene emergence is so far assumed to be mostly driven by duplication and divergence
of existing genes. The possibility that entirely new genes could emerge out of the
non-coding genomic background was long thought to be almost negligible. With the increasing
availability of fully sequenced genomes across broad scales of phylogeny, it has become
possible to systematically study the origin of new genes over time and thus revisit
this question.
Results We have used phylostratigraphy to assess trends of gene evolution across successive
phylogenetic phases, using mostly the well-annotated mouse genome as a reference.
We find several significant general trends and confirm them for three other vertebrate
genomes (humans, zebrafish and stickleback). Younger genes are shorter, both with
respect to gene length, as well as to open reading frame length. They contain also
fewer exons and have fewer recognizable domains. Average exon length, on the other
hand, does not change much over time. Only the most recently evolved genes have longer
exons and they are often associated with active promotor regions, i.e. are part of
bidirectional promotors. We have also revisited the possibility that de novo evolution
of genes could occur even within existing genes, by making use of an alternative reading
frame (overprinting). We find several cases among the annotated Ensembl ORFs, where
the new reading frame has emerged at a higher phylostratigraphic level than the original
one. We discuss some of these overprinted genes, which include also the Hoxa9 gene
where an alternative reading frame covering the homeobox has emerged within the lineage
leading to rodents and primates (Euarchontoglires).
Conclusions We suggest that the overall trends of gene emergence are more compatible with a de
novo evolution model for orphan genes than a general duplication-divergence model.
Hence de novo evolution of genes appears to have occurred continuously throughout
evolutionary time and should therefore be considered as a general mechanism for the
emergence of new gene functions.
0 comments:
Post a Comment