Sunday, May 07, 2023

Structured Water Science

pollacklab  |  Water has three phases – gas, liquid, and solid; but findings from our laboratory imply the presence of a surprisingly extensive fourth phase that occurs at interfaces. The formal name for this fourth phase is exclusion-zone water, aka EZ water. This finding may have profound implication for chemistry, physics, and biology.

The impact of surfaces on the contiguous aqueous phase is generally thought to extend no more than a few water-molecule layers. We find, however, that colloidal and molecular solutes are profoundly excluded from the vicinity of hydrophilic surfaces, to distances up to several hundred micrometers. Such large zones of exclusion have been observed next to many different hydrophilic surfaces, and many diverse solutes are excluded. Hence, the exclusion phenomenon appears to be quite general.​

To test whether the physical properties of the exclusion zone differ from those of bulk water, multiple methods have been applied. NMR, infrared, and birefringence imaging, as well as measurements of electrical potential, viscosity, and UV-VIS and infrared-absorption spectra, collectively reveal that the solute-free zone is a physically distinct, ordered phase of water. It is much like a liquid crystal. It can co-exist essentially indefinitely with the contiguous solute-containing phase. Indeed, this unexpectedly extensive zone may be a candidate for the long-postulated “fourth phase” of water considered by earlier scientists.

The energy responsible for building this charged, low entropy zone comes from light. We found that incident radiant energy including UV, visible, and near-infrared wavelengths induce exclusion-zone growth in a spectrally sensitive manner. IR is particularly effective. Five-minute exposure to radiation at 3.1 ┬Ám (corresponding to OH stretch) causes an exclusion-zone-width increase of up to three times. Apparently, incident photons cause some change in bulk water that predisposes constituent molecules to reorganize and build the charged, ordered exclusion zone. How this occurs is under study.​

Photons from ordinary sunlight, then, may have an unexpectedly powerful effect that goes beyond mere heating. It may be that solar energy builds order and separates charge between the near-surface exclusion zone and the bulk water beyond — the separation effectively creating a battery. This light-induced charge separation resembles the first step of photosynthesis. Indeed, this light-induced action would seem relevant not only for photosynthetic processes, but also for all realms of nature involving water and interfaces.​

The work outlined above was selected in the first cohort of NIH Transformative R01 awards, which allowed deeper and broader exploration. It was also selected as recipient the 2008 University of Washington Annual Lectureship. Each year, out of the University’s 3,800 faculty members, one is chosen to receive this award. Viewable here, the lecture presents the material in a lively manner, accessible to non-experts.

The material now appears in a book, published 2013, entitled The Fourth Phase of Water: Beyond Solid, Liquid and Vapor. Sample chapters are freely accessible at www.ebnerandsons.com, which also contains published reviews. Reader reviews can be found on Amazon.com.

Many lectures and interviews on the material above can be found on the internet. Of interest are two TEDx talks. The original one presents an outline of the basic discoveries, designed for a lay audience. The second one, 2016, describes the relevance of EZ water for health.

Also of interest may be a short Discovery Channel piece that combines fourth phase water with snowboarding.

 

 

0 comments:

Chuck - Don't Let Turtle McConnell And His Pwned Bitch Boys Destroy Your Last Gasp At Manhood!!!

Today, I sent my colleagues my plan for the final work period of the first session of the 118th Congress—including negotiations on long-term...