Friday, October 09, 2020

If Penrose Talm'bout Gravitational Waves, Then Get Your Surfboard Ready!!!

space  |  Penrose admits it's a wild suggestion, but believes that like all good scientific theories, it might be tested through experiment and observation. These tests stem from the idea that our aeon and the one preceding it were not completely isolated from one another. "Information does get through," he said. "It gets through in the form of a shock wave in our universe's initial dark matter." 

Dark matter, like dark energy, is a shadowy substance, this time needed to account for the way structures such as galaxies and clusters of galaxies formed in the early universe. According to Penrose's calculations, that shock wave would have had an effect on the cosmic microwave background (CMB), which is the leftover radiation from the Big Bang, released when the universe was under 400,000 years old. "You'd see rings in the CMB that are slightly warmer or cooler than the average temperature," he said.

The equations of CCC predict that a shock wave arriving from a previous aeon would have dragged matter into our universe. If that caused material to head toward us, we would see light from that region shunted to shorter wavelengths — an effect astronomers call blueshift. Equally, a region carried away from us by a CCC shock wave would be redshifted, meaning its wavelength would be stretched out. 

Blueshifted regions would appear hotter and redshifted areas cooler. It's these changes Penrose believes we'd see as rings in the cosmic microwave background. Multiple shockwaves might even have produced a series of concentric rings. "I asked whether anyone had looked for these rings in the sky," Penrose said.

Several years ago, it did seem as if those rings had been found, a veritable smoking gun for CCC. "Except nobody believed us. They said it must have been a fluke or something," Penrose said. 

"But those signatures have been confirmed by alternative groups," said Vahe Gurzadyan a physicist at the Yerevan Physics Institute in Armenia and Penrose's long time collaborator on CCC.

The scientists point to the fact that a team of Polish and Canadian researchers confirmed the presence of the rings to a confidence level of 99.7%. However, there are still many doubters. Gurzadyan remains steadfast. "These structures are real – there is no doubt that our calculations are reliable and correct," he said. Still, Penrose has been exploring other approaches that might further support the pair's claims about CCC and a time before the Big Bang.

The transition between aeons would do something more fundamental that just create a shock wave in our dark matter and rings in the cosmic microwave background. "A new material, the dominant material in the universe, is created at the crossover," Penrose said. He regards that new material as the initial form of dark matter itself. 

"But in order that it doesn't build up from aeon to aeon, it has to decay," he said. He calls these initial dark matter particles erebons after Erebos, the Greek god of darkness.

On average it would take 100 billion years for an erebon to decay, but there are some that will have decayed in the 14-billion-year history of our universe. Crucially, as they decay, Penrose says erebons dump all their energy into gravitational waves.