Sunday, December 19, 2010

science: the breakthroughs of 2010 and insights of the decade

AAAS | Until this year, all human-made objects have moved according to the laws of classical mechanics. Back in March, however, a group of researchers designed a gadget that moves in ways that can only be described by quantum mechanics—the set of rules that governs the behavior of tiny things like molecules, atoms, and subatomic particles. In recognition of the conceptual ground this experiment breaks, the ingenuity behind it, and its many potential applications, Science has called this discovery the most significant scientific advance of 2010.

Physicists Andrew Cleland and John Martinis from the University of California at Santa Barbara and their colleagues designed the machine—a tiny metal paddle of semiconductor, visible to the naked eye—and coaxed it into dancing with a quantum groove. First, they cooled the paddle until it reached its “ground state,” or the lowest energy state permitted by the laws of quantum mechanics (a goal long-sought by physicists). They then raised the widget’s energy by a single quantum to produce a purely quantum-mechanical state of motion. They even managed to put the gadget in both states at once, so that it literally vibrated a little and a lot at the same time—a bizarre phenomenon allowed by the weird rules of quantum mechanics.

Science and its publisher, AAAS, have recognized this first quantum machine as the 2010 Breakthrough of the Year. They have also compiled nine other important scientific accomplishments from this past year into a top 10 list, appearing in a special news feature in the journal’s 17 December 2010 issue. Additionally, Science news writers and editors have chosen to spotlight 10 “Insights of the Decade” that have transformed the landscape of science in the 21st century.

Science’s list of the nine other groundbreaking achievements from 2010 includes:

Synthetic Biology. In a defining moment for biology and biotechnology, researchers built a synthetic genome and used it to transform the identity of a bacterium. The genome replaced the bacterium’s DNA so that it produced a new set of proteins—an achievement that prompted a Congressional hearing on synthetic biology. In the future, researchers envision synthetic genomes that are custom-built to generate biofuels, pharmaceuticals, or other useful chemicals.

Neandertal Genome. Researchers sequenced the Neandertal genome from the bones of three female Neandertals who lived in Croatia sometime between 38,000 and 44,000 years ago. New methods of sequencing degraded fragments of DNA allowed scientists to make the first direct comparisons between the modern human genome and that of our Neandertal ancestors.

HIV Prophylaxis. Two HIV prevention trials of different, novel strategies reported unequivocal success: A vaginal gel that contains the anti-HIV drug tenofovir reduced HIV infections in women by 39% and an oral pre-exposure prophylaxis led to 43.8% fewer HIV infections in a group of men and transgender women who have sex with men.

Exome Sequencing/Rare Disease Genes. By sequencing just the exons of a genome, or the tiny portion that actually codes for proteins, researchers who study rare inherited diseases caused by a single, flawed gene were able to identify specific mutations underlying at least a dozen diseases.

Molecular Dynamics Simulations. Simulating the gyrations that proteins make as they fold has been a combinatorial nightmare. Now, researchers have harnessed the power of one of the world’s most powerful computers to track the motions of atoms in a small, folding protein for a length of time 100 times longer than any previous efforts.

Quantum Simulator. To describe what they see in the lab, physicists cook up theories based on equations. Those equations can be fiendishly hard to solve. This year, though, researchers found a short-cut by making quantum simulators—artificial crystals in which spots of laser light play the role of ions, and atoms trapped in the light stand in for electrons. The devices provide quick answers to theoretical problems in condensed matter physics and they might eventually help solve mysteries such as superconductivity.

Next-Generation Genomics. Faster and cheaper sequencing technologies are enabling very large-scale studies of both ancient and modern DNA. The 1000 Genomes Project, for example, has already identified much of the genome variation that makes us uniquely human—and other projects in the works are set to reveal much more of the genome’s function.

RNA Reprogramming. Reprogramming cells—turning back their developmental clocks to make them behave like unspecialized “stem cells” in an embryo—has become a standard lab technique for studying diseases and development. This year, researchers found a way to do it using synthetic RNA. Compared with previous methods, the new technique is twice as fast, 100 times as efficient, and potentially safer for therapeutic use.

The Return of the Rat. Mice rule the world of laboratory animals, but for many purposes researchers would rather use rats. Rats are easier to work with and anatomically more similar to human beings; their big drawback is that methods used to make “knockout mice”—animals tailored for research by having specific genes precisely disabled—don’t work for rats. A flurry of research this year, however, promises to bring “knockout rats” to labs in a big way.

Finally, to celebrate the end of the current decade, Science news reporters and editors have taken a step back from their weekly reporting to take a broader look at 10 of the scientific insights that have changed the face of science since the dawn of the new millennium. Here are their 10 “Insights of the Decade”:

0 comments:

What Is France To Do With The Thousands Of Soldiers Expelled From Africa?

SCF  |    Russian President Vladimir Putin was spot-on this week in his observation about why France’s Emmanuel Macron is strutting around ...