Friday, June 11, 2010

remember where you read it first....,

Video - the great Brook Benton "Just a Matter of Time".

New Scientist | Children with autism appear to have a characteristic chemical signature in their urine which might form the basis of an early diagnostic test for the condition.

The finding also adds weight the hypothesis that substances released by gut bacteria are contributing to the onset of the condition.

Autism has previously been linked to metabolic abnormalities and gastrointestinal problems such as gut pain and diarrhoea. Several studies have also hinted at changes in gut bacteria in the faeces of children with autism.

To investigate whether signs of these metabolic changes might be detectable in children's urine, Jeremy Nicholson and colleagues at Imperial College London investigated 39 children with autism, 28 of their non-autistic siblings and 34 unrelated children.

Chemical fingerprint

Using nuclear magnetic resonance (NMR) spectroscopy to analyse the children's urine, they found that each of these groups had a distinct chemical fingerprint, with clear and significant differences between children with autism and unrelated controls.

"The signature that comes up is related to gut bacteria," says Nicholson. It is not yet clear whether the bacteria's metabolic products contribute to the development of autism, but it is a possibility worth investigating, he adds. A large proportion of autistic children have severe gastrointestinal problems that tend to appear at about the same time as the behavioural symptoms.

"It adds another link to the gut bacterial involvement in the onset of disorder," says Glenn Gibson of the University of Reading, UK, who has previously identified abnormally high levels of clostridium bacteria in children with autism.

One possibility is that the gut bacteria in children with autism are producing toxins that might interfere with brain development. One of the compounds identified in the urine of autistic children was N-methyl-nicotinamide (NMND), which has also been implicated in Parkinson's disease.