Scientists Han Uhm of Ajou University in Korea, along with Kwang Lee and Baik Seong of Yonsei University in Korea, have published the results of their study on the H1N1 disinfectant in a recent issue of Applied Physics Letters. Besides being environmentally benign, AOW also has the advantage that it may cost significantly less to prepare compared with chemical disinfectants.
During the past several months, H1N1 has infected thousands of people worldwide and has proven to be a highly contagious disease. Attempts to combat the disease have included preventative vaccines and the use of disinfectants to prevent the spread of the disease. However, most of these disinfectants have chemicals that can harm the environment.
In the current study, the researchers found that they could make neutral water acidic by mixing a very small amount of hydrochloric acid into the water. Adding just 22 grams of hydrochloric acid to one ton of neutral water can change the pH value of the water from 7 to 4. As the scientists explain, the negative chlorine ions have a sterilizing effect on viruses, and a strong acidity in general also has a sterilizing effect.
Although acidic water itself can partially inactivate the H1N1 virus, the scientists also added an ozone gas concentration of more than 10 mg/liter to the water to enhance the sterilization effect. All the viruses were killed after five minutes of mixing the acidic ozone water with about 430,000 viruses in the environment.
When observing the number of viruses killed in a given time, the researchers found that the acidic ozone water had a synergic effect, outperforming the sum of the individual effects of acidic water and ozone water. Part of the reason for the enhanced sterilization is that, while ozone decays over time due to impurities, the acidification of water slows the decay, prolonging the time of disinfection.