Monday, January 19, 2015

you know some of this already exists given how far along those paperclip nazis were 60 years ago...,

CNN |  Imagine a blimp city floating 30 miles above the scorching surface of Venus -- a home for a team of astronauts studying one of the solar system's most inhospitable planets.

NASA is currently doing just that; floating a concept that could one day see a 30-day manned mission to Earth's closest planetary neighbor.

Eventually, the mission could involve a permanent human presence suspended above the planet.

Deep heat
Also known as the morning star, and named after the goddess of love and beauty because it shone the brightest of the five planets known to ancient astronomers, Venus is a hot, sulphurous, hellish place whose surface has more volcanoes than any other planet in the solar system.

With a mean temperature of 462 degrees Celsius (863 degrees Fahrenheit), an atmospheric pressure 92 times greater than Earth's and a cloud layer of sulphuric acid, even probes to Venus have lasted little more than two hours. Its surface is hot enough to melt lead and its atmospheric pressure is the equivalent of diving a mile underwater.

But above this cauldron of carbon dioxide at an altitude of 50km (30 miles) scientists say the conditions are as close to Earth's as you'll find anywhere in the solar system.

The gravity at this altitude is only slightly lower than that of Earth, its atmospheric pressure is similar and the aerospace provides enough protection from solar radiation to make it no more dangerous than taking a trip to Canada.

Creating HAVOC
Known at NASA as HAVOC - High Altitude Venus Operational Concept - engineers and scientists at the Systems Analysis and Concepts Directorate at NASA's Langley Research Center in Hampton, Virginia, have been working on a preliminary feasibility study on how robots and humans could make a Venus mission a reality.

"The atmosphere of Venus is an exciting destination for both further scientific study and future human exploration," said aerospace engineer Christopher A. Jones of the Space Mission Analysis Branch.