Showing posts with label zeta. Show all posts
Showing posts with label zeta. Show all posts

Monday, May 08, 2023

How Does Water Move In The Body?

amidwesterndoctor  |  One of the fascinating things about science is that while it is an excellent tool for discerning the nature of reality, it will simultaneously refuse to look at data with implications that challenge the existing scientific orthodoxy. So an unfortunate situation is created where science advances knowledge to a point but then reverses polarities and paradoxically becomes a barrier to that advancement.

An excellent illustration of this dynamic can be seen with water, and as a result, many of its properties are relatively unknown. One of the most important properties is that provided ambient infrared energy is present in the environment and a polar surface exists, water can assume a semi-solid state where it behaves like a liquid crystalline structure. Since a significant portion of the water within the body is in the liquid crystalline state, the biological consequences of this water, in my eyes, represent a key forgotten side of medicine.

In the first part of this series, I discussed the long lineage of scientists who have studied this semi-solid form of water, followed by listing some of the key properties of this gel-like 4th phase of water and what causes it to form. Since it has been studied by so many, it has many names (e.g., interfacial water or EZ water) and hereafter will be referred to as liquid crystalline water, which I believe is the most accurate description for it.

In the second part of the series, I discussed how water’s ability to become a partial solid through its liquid crystalline phase explains many of the structural mysteries of the body. The body and its tissues have a significant strength and durability one would expect to find in a solid, but at the same time, it has a high degree of flexibility and capacity for rapid movement one would expect in a liquid.

Note: the references for the assertions in this section can be found within those two articles.

Because liquid crystalline water is effectively both a solid and liquid, it can accommodate these conflicting demands. An incredible degree of natural engineering, in turn, exists within the body to utilize its properties to accomplish both. In addition to creating structure (including, for example, the barriers that protect your blood vessels from damage, which also happen to be a vital target of the spike protein’s toxicity), the body also frequently makes use of phase transitions between water’s liquid crystalline state and its regular liquid state.

The transitions are important because they provide the mechanisms that underlie a variety of physiologic processes our existing models fail to explain effectively. For example, as discussed in the article, there are a variety of significant inconsistencies within the current model to explain how muscles contract, but they have not been seriously critiqued because no better model exists for muscle function.

The phase transition model instead argues that muscles are designed to form liquid crystalline water. The formation of that water inside the muscle tissue naturally expands and stretches the muscle tissue. Then when the liquid crystalline water is transitioned back to its regular liquid state, the muscle rapidly contracts since an expansive pressure is no longer present to resist the tension in its stretched proteins. Another other interesting applications of this expansive force is that it allows plants and seedlings to break apart rock solid objects as they grow.

Similarly, the formation of liquid crystalline water (which holds a negative charge) with an immediately adjacent layer of positively charged protons creates an electrical charge gradient. Rather than dissipating, this gradient persists (essentially functioning as a battery), and this charge can be measured directly.

Thus, one of the most interesting characteristics of liquid crystalline water is that it effectively functions as an energy source living systems can utilize. Its ability to spontaneously move into a more structured form (which the muscles, for example, utilize) is one such example. Some of the other critically important utilizations of water’s ability to convert ambient infrared energy into a usable form of energy include:

•Photosynthesis. To my knowledge, liquid crystalline water’s contribution to this process has not yet been fully worked out. However, frequencies of light that increase liquid crystalline water have been reported to increase plant growth, and a particulate material that was designed to increase the formation of liquid crystalline water was shown to create at least a 2-3-fold increase in root length and/or formation of shoots.

•Nerve signal conduction (agents that block the formation of liquid crystalline water block nerve function, and nerve signal conduction depends upon a phase transition within the neuron).

•Cellular transport and division (these also appear to depend upon water’s phase transitions).

•Fluid circulation.

Hameroff Was Talking About Living Water Forty Years Ago...,

hameroff  |  Biomolecules have evolved and flourished in aqueous environments, and basic interactions among biomolecules and their pervasive hosts, water molecules, are extremely important. The properties of intracellular water are controversial. Many authors believe that more than 90 percent of intracellular water is in the “bulk” phase-water as it exists in the oceans (Cooke and Kuntz, 1974; Schwan and Foster, 1977; Fung and McGaughy, 1979). This traditional view is challenged

by others who feel that none of the water in living cells is bulk (Troshin, 1966, Cope 1976, Negendank and Karreman, 1979). A middle position is assumed by those who feel that about half of “living” water is bulk and the other half “ordered” (Hinke, 1970; Clegg, 1976; Clegg, 1979; Horowitz and Paine, 1979). This group emphasizes the importance of “ordered” water to cellular structure and function.

Many techniques have been used to study this issue, but the results still require a great deal of interpretation. Nuclear magnetic resonance (NMR), neutron diffraction, heat capacity measurement, and diffusion studies are all inconclusive. Water appears to exist in both ordered and aqueous forms within cells. The critical issue is the relation between intracellular surfaces and water. Surfaces of all kinds are known to perturb adjacent water, but within cells it is unknown precisely how far from the surfaces ordering may extend. We know the surface area of the microtrabecular lattice and other cytoskeleton components is extensive (billions of square nanometers per cell) and that about one fifth of cell interiors consist of these components. Biologist James Clegg (1981) has extensively reviewed these issues. He concludes that intracellular water exists in three phases. 1) “Bound water” is involved in primary hydration, being within one or two layers from a biomolecular surface. 2) “Vicinal water” is ordered, but not directly bound to structures except other water molecules. This altered water is thought to extend 8 to 9 layers of water molecules from surfaces, a distance of about 3 nanometers. Garlid (1976, 1979) has shown that vicinal water has distinct solvent properties which differ from bulk water. Thus “borders” exist between water phases which partition solute molecules. 3) “Bulk water” extends beyond 3 nanometers from cytoskeletal surfaces (Figure 6.4).

Drost-Hansen (1973) described cooperative processes and phase transitions among vicinal water molecules. Clegg points out the potential implications of vicinal water on the function of enzymes which had previously been considered “soluble.” Rather than floating freely in an aqueous soup, a host of intracellular enzymes appear instead to be bound to the MTL surface within the vicinal water phase. Significant advantages appear evident to such an arrangement: a sequence of enzymes which perform a sequence of reactions on a substrate would be much more efficient if bound on a surface in the appropriate order. Requirements for diffusion of the substrate, the most time consuming step in enzymatic processes, would be minimal. Clegg presents extensive examples of associations of cytoplasmic enzymes which appear to be attached to and regulated by, the MTL. These vicinal water multi-enzyme complexes may indeed be part of a cytoskeletal information processing system. Clegg conjectures that dynamic conformational activities within the cytoskeleton/MTL can selectively excite enzymes to their active states.

The polymerization of cytoskeletal polymers and other biomolecules appears to flow upstream against the tide of order proceeding to disorder which is decreed by the second law of thermodynamics. This apparent second law felony is explained by the activities of the water molecules involved (Gutfreund, 1972). Even in bulk aqueous solution, water molecules are somewhat ordered, in that each water molecule can form up to 4 hydrogen bonds with other water molecules. Motion of the water molecules (unless frozen) and reversible breaking and reforming of these hydrogen bonds maintain the far miliar liquid nature of bulk water. Outer surfaces of biomolecules form more stable hydrogen bonding with water, “ordering” the water surrounding them. This results in a decrease in entropy (increased order) and increase in free energy: factors which would strongly inhibit the solubility of biomolecules if not for the effects of hydrophobic interactions. Hydrophobic groups (for example amino acids whose side groups are non-polar, that is they have no charge-like polar groups to form hydrogen bonds in water) tend to combine, or coalesce for two main reasons: Van der Waals forces and exclusion of water. 

Combination of hydrophobic groups “liberate” ordered water into free water, resulting in increased entropy and decreased free energy, factors which tend to drive reactions. The magnitude of the favorable free energy change for the combination of hydrophobic groups depends on their size and how well they fit together “sterically.” A snug fit between groups will exclude more water from hydrophobic regions than will loose fits. Consequently, specific biological reactions can rely on hydrophobic interactions. Forma, tion of tertiary and quaternary protein structure (including the assembly of microtubules and other cytoskeletal polymers) are largely regulated by hydrophobic interactions, and by the effect of hydrophobic regions on the energies of other bonding. A well studied example of the assembly of protein subunits into a complex structure being accompanied by an increase in entropy (decrease in order) is the crystallization of the tobacco mosaic virus. When the virus assembles from its subunits, an increase in entropy occurs due to exclusion of water from the virus surface. Similar events promote the assembly of microtubules and other cytoskeletal elements The attractive forces which bind hydrophobic groups are distinctly different from other types of chemical bonds such as covalent bonds and ionic bonds. These forces are called Van der Waals forces after the Dutch chemist who described them in 1873. At that time, it had been experimentally observed that gas molecules failed to follow behavior predicted by the “ideal gas laws” regarding pressure, temperature and volume relationships. Van der Waals attributed this deviation to the volume occupied by the gas molecules and by attractive forces among the gas molecules. These same attractive forces are vital to the assembly of organic crystals, including protein assemblies. They consist of dipole-dipole attraction, “induction effect,” and London dispersion forces. These hydrophobic Van der Waals forces are subtly vital to the assembly and function of important biomolecules.

Dipole-dipole attractions occur among molecules with permanent dipole moments. Only specific orientations are favored: alignments in which attractive, low energy arrangements occur as opposed to repulsive, high energy orientations. A net attraction between two polar molecules can result if their dipoles are properly configured. The “induction” effect occurs when a permanent dipole in one molecule can polarize electrons in a nearby molecule. The second molecule’s electrons are distorted so that their interaction with the dipole of the first molecule is attractive. The magnitude of the induced dipole attraction force was shown by Debye in 1920 to depend on the molecules’ dipole moments and their polarizability. Defined as the dipole moment induced by a standard field, polarizability also depends on the molecules’ orientation relative to that field. Subunits of protein assemblies like the tobacco mosaic virus have been shown to have high degrees of polarizability. London dispersion forces explain why all molecules, even those without intrinsic dipoles, attract each other. The effect was recognized by F. London in 1930 and depends on quantum mechanical motion of electrons. Electrons in atoms without permanent dipole moments (and “shared” electrons in molecules) have, on the average, a zero dipole, however “instantaneous dipoles” can be recognized. Instantaneous dipoles can induce dipoles in neighboring polarizable atoms or molecules. The strength of London forces is proportional to the square of the polarizability and inversely to the sixth power of the separation. Thus London forces can be significant only when two or more atoms or molecules are very close together (Barrow, 1966). Lindsay (1987) has observed that water and ions ordered on surfaces of biological macromolecules may have “correlated fluctuations” analogous to London forces among electrons. Although individually tenuous, these and other forces are the collective “glue” of dynamic living systems.

Sunday, May 07, 2023

Structured Water Science

pollacklab  |  Water has three phases – gas, liquid, and solid; but findings from our laboratory imply the presence of a surprisingly extensive fourth phase that occurs at interfaces. The formal name for this fourth phase is exclusion-zone water, aka EZ water. This finding may have profound implication for chemistry, physics, and biology.

The impact of surfaces on the contiguous aqueous phase is generally thought to extend no more than a few water-molecule layers. We find, however, that colloidal and molecular solutes are profoundly excluded from the vicinity of hydrophilic surfaces, to distances up to several hundred micrometers. Such large zones of exclusion have been observed next to many different hydrophilic surfaces, and many diverse solutes are excluded. Hence, the exclusion phenomenon appears to be quite general.​

To test whether the physical properties of the exclusion zone differ from those of bulk water, multiple methods have been applied. NMR, infrared, and birefringence imaging, as well as measurements of electrical potential, viscosity, and UV-VIS and infrared-absorption spectra, collectively reveal that the solute-free zone is a physically distinct, ordered phase of water. It is much like a liquid crystal. It can co-exist essentially indefinitely with the contiguous solute-containing phase. Indeed, this unexpectedly extensive zone may be a candidate for the long-postulated “fourth phase” of water considered by earlier scientists.

The energy responsible for building this charged, low entropy zone comes from light. We found that incident radiant energy including UV, visible, and near-infrared wavelengths induce exclusion-zone growth in a spectrally sensitive manner. IR is particularly effective. Five-minute exposure to radiation at 3.1 µm (corresponding to OH stretch) causes an exclusion-zone-width increase of up to three times. Apparently, incident photons cause some change in bulk water that predisposes constituent molecules to reorganize and build the charged, ordered exclusion zone. How this occurs is under study.​

Photons from ordinary sunlight, then, may have an unexpectedly powerful effect that goes beyond mere heating. It may be that solar energy builds order and separates charge between the near-surface exclusion zone and the bulk water beyond — the separation effectively creating a battery. This light-induced charge separation resembles the first step of photosynthesis. Indeed, this light-induced action would seem relevant not only for photosynthetic processes, but also for all realms of nature involving water and interfaces.​

The work outlined above was selected in the first cohort of NIH Transformative R01 awards, which allowed deeper and broader exploration. It was also selected as recipient the 2008 University of Washington Annual Lectureship. Each year, out of the University’s 3,800 faculty members, one is chosen to receive this award. Viewable here, the lecture presents the material in a lively manner, accessible to non-experts.

The material now appears in a book, published 2013, entitled The Fourth Phase of Water: Beyond Solid, Liquid and Vapor. Sample chapters are freely accessible at www.ebnerandsons.com, which also contains published reviews. Reader reviews can be found on Amazon.com.

Many lectures and interviews on the material above can be found on the internet. Of interest are two TEDx talks. The original one presents an outline of the basic discoveries, designed for a lay audience. The second one, 2016, describes the relevance of EZ water for health.

Also of interest may be a short Discovery Channel piece that combines fourth phase water with snowboarding.

 

 

Sunday, July 03, 2022

Zeta Potential

research.colostate  |  Zeta potential is a physical property which is exhibited by any particle in suspension, macromolecule or material surface. It can be used to optimize the formulations of suspensions, emulsions and protein solutions, predict interactions with surfaces, and optimise the formation of films and coatings. Knowledge of the zeta potential can reduce the time needed to produce trial formulations. It can also be used as an aid in predicting long-term stability.

This introduction concentrates on the zeta potential of colloidal systems, with a density low enough such that if they remain dispersed, sedimentation is negligible.


Colloid Science
Three of the fundamental states of matter are solids, liquids and gases. If one of these states is finely dispersed in another then we have a 'colloidal system'. These materials have special properties that are of great practical importance.


There are various examples of colloidal systems that include aerosols, emulsions, colloidal suspensions and association colloids. In certain circumstances, the particles in a dispersion may adhere to one another and form aggregates of successively increasing size, which may settle out under the influence of gravity. An initially formed aggregate is called a floc and the process of its formation flocculation. The floc may or may not sediment or phase separate. If the aggregate changes to a much denser form, it is said to undergo coagulation. An aggregate usually separates out either by sedimentation (if it is more dense than the medium) or by creaming (if it less dense than the medium). The terms flocculation and coagulation have often been used interchangeably. Usually coagulation is irreversible whereas flocculation can be reversed by the process of deflocculation. 


Colloidal Stability and DVLO Theory

The scientists Derjaguin, Verwey, Landau and Overbeek developed a theory in the 1940s which dealt with the stability of colloidal systems. DVLO theory suggests that the stability of a particle in solution is dependent upon its total potential energy function VT.

This theory recognizes that VT is the balance of several competing contributions:

VT = VA + VR + VS

VS is the potential energy due to the solvent, it usually only makes a marginal contribution to the total potential energy over the last few nanometers of separation.

Much more important is the balance between VA and VR, these are the attractive and repulsive contributions. They potentially are much larger and operate over a much larger distance.

VA = -A/(12 π D2)

where A is the Hamaker constant and D is the particle separation.

The repulsive potential VR is a far more complex function.

VR = 2 π ε a ζ2 exp(-κD)

where a is the particle radius, π is the solvent permeability, κ is a function of the ionic composition and ζ is the zeta potential.

DVLO theory suggests that the stability of a colloidal system is determined by the sum of these van der Waals attractive (VA) and electrical double layer repulsive (VR) forces that exist between particles as they approach each other due to the Brownian motion they are undergoing. Figure 2a shows the separate forces as a dotted line, and the sum of these forces as the solid line. This sum has a peak, and the theory proposes that particles that are initially separated are prevented from approaching each other because of the repulsive force. However if the particles are forced with sufficient energy to overcome that barrier, for example by increasing the temperature, the attractive force will pull them into contact where they adhere strongly and irreversibly together. Therefore if the particles have a sufficiently high repulsion, the dispersion will resist flocculation and the colloidal system will be stable.

However if a repulsion mechanism does not exist then flocculation or coagulation will eventually take place. If the zeta potential is reduced (e.g. in high salt concentrations), there is a possibility of a "secondary minimum" being created, where a much weaker and potentially reversible adhesion between particles exists (figure 2 (b)). These weak flocs are sufficiently stable not to be broken up by Brownian motion, but may disperse under an externally applied force such as vigorous agitation.

Therefore to maintain the stability of the colloidal system, the repulsive forces must be dominant. How can colloidal stability be achieved? There are two fundamental mechanisms that affect dispersion stability.

Steric repulsion - this involves polymers added to the system adsorbing onto the particle surface and preventing the particle surfaces coming into close contact. If enough polymer adsorbs, the thickness of the coating will be sufficient to keep particles separated by steric repulsions between the polymer layers, and at those separations the van der Waals forces are too weak to cause the particles to adhere.

Electrostatic or charge stabilization - this is the effect on particle interaction due to the distribution of charged species in the system.

Each mechanism has its benefits for particular systems. Steric stabilization is simple, requiring just the addition of a suitable polymer. However it can be difficult to subsequently flocculate the system if this is required, the polymer can be expensive and in some cases the polymer is undesirable e.g. when a ceramic slip is cast and sintered, the polymer has to be 'burnt out'. This causes shrinkage and can lead to defects.

Electrostatic or charge stabilization has the benefits of stabilizing or flocculating a system by simply altering the concentration of ions in the system. This is a reversible process and is potentially inexpensive.

It has long been recognized that the zeta potential is a very good index of the magnitude of the interaction between colloidal particles and measurements of zeta potential are commonly used to assess the stability of colloidal system.

bonjour bonne année...,

2025 is a mathematical wonder.!! pic.twitter.com/WsUfhKF4C9 — 𝗟 𝗼 𝗹 𝗹 𝘂 𝗯 𝗲 𝗲 (@Lollubee) December 30, 2024