Friday, March 25, 2016

geneticists/molecular biologists are indispensible knowledge-workers...,


harvarddesignmagazine |  GC  The synthetic biology revolution is not just about going from reading to writing. Genomics already went from reading single genes to reading multiple genes; now synthetic biology is going from writing single genes to writing whole genomes. Both reading and writing are tangled up in the design process. In many fields, there is a design-build-analyze loop: you build something, and then you look for its failure modes. After living in a building for a while, you notice that it leaks. Then you do another round of design; you radicalize your structures and hold them to stronger standards until they fail. Then you slowly eek your way back to something that works, but works better than before. The same thing is true in synthetic biology. We have design software, like BIOCAD, cadnano, Millstone, and others.

But I see two fundamental differences between synthetic biology and architecture. In architecture, you might start with walls and windows as your standard parts. In biology, our standard parts have been refined by three billion years of evolution, on 1021 liters of soil and water. That’s a lot of debugging. Also, in synthetic biology we have the ability to recreate that refinement process ourselves, on a smaller scale and in a more directed way. We can run our own evolutions. When you do the design-build-analyze loop for buildings, you might make one small prototype, build it, and, if it starts to go wrong, you debug it in real time. Like the John Hancock Tower, in downtown Boston—you know its history, right?





MA

Glass panels mysteriously falling off …



GC

It was being debugged as it was being used. With synthetic biology, we can make a billion or a trillion designs, build them all, test them all, take the winner from that testing, and then do it all again.



MA

What is the timescale for this type of experiment?



GC

It depends on your goal. If your goal is to make a chemical, say, or to build a little factory that makes chemicals, you can design, build, and test a billion things in one day. If your goal is to make a pig, you’re talking more in the order of years. And if you are creating a human pharmaceutical, you’re talking about 10 years just to get it through all the regulatory phases. You might find a clever way of doing billions of prototypes by working with human cells in the lab, but when you want to introduce it into the marketplace, you’re going to be testing one drug at a time, just like you test one building at a time.




MA

You’ve worked on some things that are pretty far removed from our daily concerns—like how to bring the wooly mammoth back to life—but a lot of your work stands to affect our everyday bodily experience. What are you working on that you might want to use to change your own genome?



GC

There is an APP (amyloid precursor protein) allele that I wouldn’t mind having—it gives an extra 10 years of resistance to Alzheimer’s. That’s something that’s preventative, and it’s something we more or less know how to do. But there are some things we don’t know how to do yet, such as having better memory or making more effective use of the brain. Those would be great. Reversing aging would be nice, too.



MA

Aren’t our inadequacies part of what makes us human? How would it affect the human experience if we could live much longer, for example?



GC

I think what makes us human is mainly our ability to plan and to care for others. Chimpanzees form little cliques, and they certainly care for their families, but I think our ability to imagine scenarios that have never happened—to think of ways to avoid having an asteroid eliminate all life on the planet—is uniquely human. We have an ability to be thoughtful about ourselves and oth- ers over long periods of time. I think that would remain true if we lived longer.

0 comments:

bonjour bonne annΓ©e...,

2025 is a mathematical wonder.!! pic.twitter.com/WsUfhKF4C9 — π—Ÿ 𝗼 𝗹 𝗹 π˜‚ 𝗯 𝗲 𝗲 (@Lollubee) December 30, 2024