Thursday, April 13, 2017

The Dark Secret at the Heart of Artificial Intelligence



technologyreview |   No one really knows how the most advanced algorithms do what they do. That could be a problem.

In 2015, a research group at Mount Sinai Hospital in New York was inspired to apply deep learning to the hospital’s vast database of patient records. This data set features hundreds of variables on patients, drawn from their test results, doctor visits, and so on. The resulting program, which the researchers named Deep Patient, was trained using data from about 700,000 individuals, and when tested on new records, it proved incredibly good at predicting disease. Without any expert instruction, Deep Patient had discovered patterns hidden in the hospital data that seemed to indicate when people were on the way to a wide range of ailments, including cancer of the liver. There are a lot of methods that are “pretty good” at predicting disease from a patient’s records, says Joel Dudley, who leads the Mount Sinai team. But, he adds, “this was just way better.”

At the same time, Deep Patient is a bit puzzling. It appears to anticipate the onset of psychiatric disorders like schizophrenia surprisingly well. But since schizophrenia is notoriously difficult for physicians to predict, Dudley wondered how this was possible. He still doesn’t know. The new tool offers no clue as to how it does this. If something like Deep Patient is actually going to help doctors, it will ideally give them the rationale for its prediction, to reassure them that it is accurate and to justify, say, a change in the drugs someone is being prescribed. “We can build these models,” Dudley says ruefully, “but we don’t know how they work.”

Artificial intelligence hasn’t always been this way. From the outset, there were two schools of thought regarding how understandable, or explainable, AI ought to be. Many thought it made the most sense to build machines that reasoned according to rules and logic, making their inner workings transparent to anyone who cared to examine some code. Others felt that intelligence would more easily emerge if machines took inspiration from biology, and learned by observing and experiencing. This meant turning computer programming on its head. Instead of a programmer writing the commands to solve a problem, the program generates its own algorithm based on example data and a desired output. The machine-learning techniques that would later evolve into today’s most powerful AI systems followed the latter path: the machine essentially programs itself.

At first this approach was of limited practical use, and in the 1960s and ’70s it remained largely confined to the fringes of the field. Then the computerization of many industries and the emergence of large data sets renewed interest. That inspired the development of more powerful machine-learning techniques, especially new versions of one known as the artificial neural network. By the 1990s, neural networks could automatically digitize handwritten characters.

But it was not until the start of this decade, after several clever tweaks and refinements, that very large—or “deep”—neural networks demonstrated dramatic improvements in automated perception. Deep learning is responsible for today’s explosion of AI. It has given computers extraordinary powers, like the ability to recognize spoken words almost as well as a person could, a skill too complex to code into the machine by hand. Deep learning has transformed computer vision and dramatically improved machine translation. It is now being used to guide all sorts of key decisions in medicine, finance, manufacturing—and beyond.

0 comments:

bonjour bonne annΓ©e...,

2025 is a mathematical wonder.!! pic.twitter.com/WsUfhKF4C9 — π—Ÿ 𝗼 𝗹 𝗹 π˜‚ 𝗯 𝗲 𝗲 (@Lollubee) December 30, 2024