Saturday, April 22, 2017

Secret Societies, Ancient Ciphers, Machine Translation

wired |  The master wears an amulet with a blue eye in the center. Before him, a candidate kneels in the candlelit room, surrounded by microscopes and surgical implements. The year is roughly 1746. The initiation has begun.

The master places a piece of paper in front of the candidate and orders him to put on a pair of eyeglasses. “Read,” the master commands. The candidate squints, but it’s an impossible task. The page is blank.

 The candidate is told not to panic; there is hope for his vision to improve. The master wipes the candidate’s eyes with a cloth and orders preparation for the surgery to commence. He selects a pair of tweezers from the table. The other members in attendance raise their candles.

The master starts plucking hairs from the candidate’s eyebrow. This is a ritualistic procedure; no flesh is cut. But these are “symbolic actions out of which none are without meaning,” the master assures the candidate. The candidate places his hand on the master’s amulet. Try reading again, the master says, replacing the first page with another. This page is filled with handwritten text. Congratulations, brother, the members say. Now you can see.

For more than 260 years, the contents of that page—and the details of this ritual—remained a secret. They were hidden in a coded manuscript, one of thousands produced by secret societies in the 18th and 19th centuries. At the peak of their power, these clandestine organizations, most notably the Freemasons, had hundreds of thousands of adherents, from colonial New York to imperial St. Petersburg. Dismissed today as fodder for conspiracy theorists and History Channel specials, they once served an important purpose: Their lodges were safe houses where freethinkers could explore everything from the laws of physics to the rights of man to the nature of God, all hidden from the oppressive, authoritarian eyes of church and state. But largely because they were so secretive, little is known about most of these organizations. Membership in all but the biggest died out over a century ago, and many of their encrypted texts have remained uncracked, dismissed by historians as impenetrable novelties.

It was actually an accident that brought to light the symbolic “sight-restoring” ritual. The decoding effort started as a sort of game between two friends that eventually engulfed a team of experts in disciplines ranging from machine translation to intellectual history. Its significance goes far beyond the contents of a single cipher. Hidden within coded manuscripts like these is a secret history of how esoteric, often radical notions of science, politics, and religion spread underground. At least that’s what experts believe. The only way to know for sure is to break the codes.

In this case, as it happens, the cracking began in a restaurant in Germany.

Thirteen years later, in January 2011, Schaefer attended an Uppsala conference on computational linguistics. Ordinarily talks like this gave her a headache. She preferred musty books to new technologies and didn’t even have an Internet connection at home. But this lecture was different. The featured speaker was Kevin Knight, a University of Southern California specialist in machine translation—the use of algorithms to automatically translate one language into another. With his stylish rectangular glasses, mop of prematurely white hair, and wiry surfer’s build, he didn’t look like a typical quant. Knight spoke in a near whisper yet with intensity and passion. His projects were endearingly quirky too. He built an algorithm that would translate Dante’s Inferno based on the user’s choice of meter and rhyme scheme. Soon he hoped to cook up software that could understand the meaning of poems and even generate verses of its own.

Knight was part of an extremely small group of machine-translation researchers who treated foreign languages like ciphers—as if Russian, for example, were just a series of cryptological symbols representing English words. In code-breaking, he explained, the central job is to figure out the set of rules for turning the cipher’s text into plain words: which letters should be swapped, when to turn a phrase on its head, when to ignore a word altogether. Establishing that type of rule set, or “key,” is the main goal of machine translators too. Except that the key for translating Russian into English is far more complex. Words have multiple meanings, depending on context. Grammar varies widely from language to language. And there are billions of possible word combinations.