Video - VS Ramachandran on mirror neurons
In mid-November the team at the University of California San Diego (UCSD) announced the results of a small pilot study which suggests that a simple mind trick involving mirrors can help ease the pain of osteoarthritis, a condition that affects one in 10 people.
That study is in its very early stages, but since the mid-1990s neuroscientist Vilyanur S Ramachandran, who heads the team, has been extolling the benefits of mirrors for all manner of diseases and syndromes, from stroke to the mind-boggling medical phenomenon of the phantom limb.
Ramachandran's 20-year association with the mirror, and phantom limbs, has driven him to the forefront of experimental neuroscience.
The phantom (or arthritic) hand is placed behind the mirror. When the patient looks into the mirror he feels the reflection of the real hand superimposed on the phantom. He then tries to move both hands.
Many patients report they feel the phantom mimicking the movement of the real hand.
When the real hand opens its fingers, it looks as though the phantom has opened, and pain is relieved. By doing this repeatedly some patients find the phantom disappears. Providing a visual substitute for the phantom limb effectively "amputates" it.
The syndrome occurs in at least 90% of amputees - in two-thirds of those it manifests as an insatiable itch in the missing limb, many feel extreme discomfort or even chronic pain.
In most cases, pain-killers and surgical treatment have no effect.
Ramachandran's first phantom limb patient - who he calls Victor - lost his arm crossing the Mexican border into the US. He had an itch in his missing hand.
When Ramachandran prodded him in the left cheek with a cotton bud, Victor claimed he felt it in his missing left thumb - when he touched his upper lip, Victor though he was prodding his index finger.
The neurons that detect sensation in the missing hand, at a loss for anything to do, had somehow started detecting sensation in the face.
In this case there was a simple and effective treatment for the itch - scratch the face. But to Ramachandran it also had theoretical implications. It appeared to demonstrate the plasticity of brain modules - their ability to adapt to each other and their environment.
This was a radical idea as the established notion at the time was that the brain is made up of independent modules, insulated from each other and hardwired to a specific function. The notion of plasticity was something only a small group of scientists were considering.