![](http://www.wired.com/images_blogs/wiredscience/2009/11/pinto3hr1.jpg)
![](http://www.wired.com/images_blogs/wiredscience/2009/11/leafcuttercolony.jpg)
It’s as exciting as understanding the pattern of a brain. We try to understand the connections of these millions of ants that creates this caste system, complex communicaiton and foraging and territorial strategies, and it’s all done by these interactions. When you look at these things, you can’t avoid saying, at this stage an insect colony functions like an organism. A superorganism. And you can go forward and say, this is an extended phenotype: selection doesn’t work on individual level, but on the whole colony.
If you have in a population many colonies of same species, they compete with each other like solitary animals competing with one another. The colony which has a slightly better communication system to bring in limited resources, and if this slight difference has a genetic basis, that colony will reproduce faster than the neighboring colony, and the gene — the allele that codes for a slightly better communication system — will spread faster than the alleles of the neighboring colony. The phenotype is the colony, shaped by this selection. Of course, it is in the end the gene carried by the queen, the male, that spreads, and the workers are the extended phenotype which, because of their particular adapatation, will affect the spread of these genes.
When we look at how selection shapes things, we had to realize that it didn’t help us to take a purely gene perspective, like Richard Dawkins. Not that he’s wrong, but it doesn’t say as much about how selection works. Multi-level selection isn’t new, it was already proposed in the seventies, but we’ve worked it out more. The colony in the leafcutter or army ants is a major target of selection.
Not all ant societies are like this. They’re not full superorganisms. Ed Wilson sees this for all ants; I don’t. There are phylogenetically primitive ants, not so evolved as leafcutters, and they have internal friction — fights for reproduction privileges. They have superorganism traits, but I wouldn’t call them true superorganisms, as there’s a lot of selection going on at the individual level in the community. They haven’t reached point where in-colony conflict is gone and it’s now between-colony.
![](http://www.wired.com/images_blogs/wiredscience/images/2007/07/11/antviz.jpg)
So do we learn from this about humans? I’m very careful, because human society is a society built on a cultural fundamental basis. But there are biological rules to our social behavior: no question. We are one of the few species to evolve social systems. What is common in all these social systems is a division of labor; and once this was evolutionarily rendered, it became incredibly successful. This is true for almost any society: once they reach a high division of labor, they have enormous successes due to division of labor. And the second thing, once a society becomes almost like an organism, it becomes very tightly interconnected.
In our early past, in our still-biological past, 15,000 years ago we were hunter gatherers. We showed group cohesiveness and discrimination against other groups. It was adaptive. It was quite understandable that we evolved traits of group recognition, and making sure we recognized foreigners. This is my conviction that this is probably the early basis for our unfortunate xenophobic behavior that is still in us. It’s a behavior that is now terribly maladaptive. I keep always citing David Hume — that just because there is an atavistic trait in us, it doesn’t justify that we live it.
0 comments:
Post a Comment