Friday, September 17, 2021

The Tangled History Of Mr.NA Neo-Vaccinoidal Therapeutics

nature |  By the late 2000s, several big pharmaceutical companies were entering the mRNA field. In 2008, for example, both Novartis and Shire established mRNA research units — the former (led by Geall) focused on vaccines, the latter (led by Heartlein) on therapeutics. BioNTech launched that year, and other start-ups soon entered the fray, bolstered by a 2012 decision by the US Defense Advanced Research Projects Agency to start funding industry researchers to study RNA vaccines and drugs. Moderna was one of the companies that built on this work and, by 2015, it had raised more than $1 billion on the promise of harnessing mRNA to induce cells in the body to make their own medicines — thereby fixing diseases caused by missing or defective proteins. When that plan faltered, Moderna, led by chief executive Stéphane Bancel, chose to prioritize a less ambitious target: making vaccines.

That initially disappointed many investors and onlookers, because a vaccine platform seemed to be less transformative and lucrative. By the beginning of 2020, Moderna had advanced nine mRNA vaccine candidates for infectious diseases into people for testing. None was a slam-dunk success. Just one had progressed to a larger-phase trial.

But when COVID-19 struck, Moderna was quick off the mark, creating a prototype vaccine within days of the virus’s genome sequence becoming available online. The company then collaborated with the US National Institute of Allergy and Infectious Diseases (NIAID) to conduct mouse studies and launch human trials, all within less than ten weeks.

BioNTech, too, took an all-hands-on-deck approach. In March 2020, it partnered with New York-based drug company Pfizer, and clinical trials then moved at a record pace, going from first-in-human testing to emergency approval in less than eight months.

Both authorized vaccines use modified mRNA formulated in LNPs. Both also contain sequences that encode a form of the SARS-CoV-2 spike protein that adopts a shape more amenable to inducing protective immunity. Many experts say that the protein tweak, devised by NIAID vaccinologist Barney Graham and structural biologists Jason McLellan at the University of Texas at Austin and Andrew Ward at Scripps, is also a prize-worthy contribution, albeit one that is specific to coronavirus vaccines, not mRNA vaccination as a general platform.

Some of the furore in discussions of credit for mRNA discoveries relates to who holds lucrative patents. But much of the foundational intellectual property dates back to claims made in 1989 by Felgner, Malone and their colleagues at Vical (and in 1990 by Liljeström). These had only a 17-year term from the date of issue and so are now in the public domain.

Even the Karikó–Weissman patents, licensed to Cellscript and filed in 2006, will expire in the next five years. Industry insiders say this means that it will soon become very hard to patent broad claims about delivering mRNAs in lipid nanoparticles, although companies can reasonably patent particular sequences of mRNA — a form of the spike protein, say — or proprietary lipid formulations.

Firms are trying. Moderna, the dominant player in the mRNA vaccine field, which has experimental shots in clinical testing for influenza, cytomegalovirus and a range of other infectious diseases, got two patents last year covering the broad use of mRNA to produce secreted proteins. But multiple industry insiders told Nature they think these could be challengeable.

“We don’t feel there’s a lot that is patentable, and certainly not enforceable,” says Eric Marcusson, chief scientific officer of Providence Therapeutics, an mRNA vaccines company in Calgary, Canada.

 

0 comments:

bonjour bonne année...,

2025 is a mathematical wonder.!! pic.twitter.com/WsUfhKF4C9 — 𝗟 𝗼 𝗹 𝗹 𝘂 𝗯 𝗲 𝗲 (@Lollubee) December 30, 2024