Tuesday, January 19, 2016

your species cannot reboot its civilizational OS without fossil fuels


aeon |  In a world without readily mined coal, would there ever be the opportunity to test profligate prototypes of steam engines, even if they could mature and become more efficient over time? How feasible is it that a society could attain a sufficient understanding of thermodynamics, metallurgy and mechanics to make the precisely interacting components of an internal combustion engine, without first cutting its teeth on much simpler external combustion engines – the separate boiler and cylinder-piston of steam engines?

It took a lot of energy to develop our technologies to their present heights, and presumably it would take a lot of energy to do it again. Fossil fuels are out. That means our future society will need an awful lot of timber.

In a temperate climate such as the UK’s, an acre of broadleaf trees produces about four to five tonnes of biomass fuel every year. If you cultivated fast-growing kinds such as willow or miscanthus grass, you could quadruple that. The trick to maximising timber production is to employ coppicing – cultivating trees such as ash or willow that resprout from their own stump, becoming ready for harvest again in five to 15 years. This way you can ensure a sustained supply of timber and not face an energy crisis once you’ve deforested your surroundings.

But here’s the thing: coppicing was already a well-developed technique in pre-industrial Britain. It couldn’t meet all of the energy requirements of the burgeoning society. The central problem is that woodland, even when it is well-managed, competes with other land uses, principally agriculture. The double-whammy of development is that, as a society’s population grows, it requires more farmland to provide enough food and also greater timber production for energy. The two needs compete for largely the same land areas.

We know how this played out in our own past. From the mid-16th century, Britain responded to these factors by increasing the exploitation of its coal fields – essentially harvesting the energy of ancient forests beneath the ground without compromising its agricultural output. The same energy provided by one hectare of coppice for a year is provided by about five to 10 tonnes of coal, and it can be dug out of the ground an awful lot quicker than waiting for the woodland to regrow.

It is this limitation in the supply of thermal energy that would pose the biggest problem to a society trying to industrialise without easy access to fossil fuels. This is true in our post-apocalyptic scenario, and it would be equally true in any counterfactual world that never developed fossil fuels for whatever reason. For a society to stand any chance of industrialising under such conditions, it would have to focus its efforts in certain, very favourable natural environments: not the coal-island of 18th-century Britain, but perhaps areas of Scandinavia or Canada that combine fast-flowing streams for hydroelectric power and large areas of forest that can be harvested sustainably for thermal energy.

Even so, an industrial revolution without coal would be, at a minimum, very difficult. Today, use of fossil fuels is actually growing, which is worrying for a number of reasons too familiar to rehearse here. Steps towards a low-carbon economy are vital. But we should also recognise how pivotal those accumulated reservoirs of thermal energy were in getting us to where we are. Maybe we could have made it the hard way. A slow-burn progression through the stages of mechanisation, supported by a combination of renewable electricity and sustainably grown biomass, might be possible after all. Then again, it might not. We’d better hope we can secure the future of our own civilisation, because we might have scuppered the chances of any society to follow in our wake.