Wednesday, May 09, 2012

sword and shield hypothesis: the way we use our hands may determine how emotions are organized in our brains

PLoSONE | Background - According to decades of research on affective motivation in the human brain, approach motivational states are supported primarily by the left hemisphere and avoidance states by the right hemisphere. The underlying cause of this specialization, however, has remained unknown. Here we conducted a first test of the Sword and Shield Hypothesis (SSH), according to which the hemispheric laterality of affective motivation depends on the laterality of motor control for the dominant hand (i.e., the “sword hand," used preferentially to perform approach actions) and the nondominant hand (i.e., the “shield hand," used preferentially to perform avoidance actions).

Methodology/Principal Findings - To determine whether the laterality of approach motivation varies with handedness, we measured alpha-band power (an inverse index of neural activity) in right- and left-handers during resting-state electroencephalography and analyzed hemispheric alpha-power asymmetries as a function of the participants' trait approach motivational tendencies. Stronger approach motivation was associated with more left-hemisphere activity in right-handers, but with more right-hemisphere activity in left-handers.

Conclusions - The hemispheric correlates of approach motivation reversed between right- and left-handers, consistent with the way they typically use their dominant and nondominant hands to perform approach and avoidance actions. In both right- and left-handers, approach motivation was lateralized to the same hemisphere that controls the dominant hand. This covariation between neural systems for action and emotion provides initial support for the SSH.

Motivation, the drive to approach or withdraw from physical and social stimuli, is a basic building block of human emotion. For decades, scientists have believed that approach motivation is computed mainly in the left hemisphere of the brain, and withdraw motivation in the right hemisphere. Brookshire and Casasanto's study challenges this idea, showing that a well-established pattern of brain activity, found across dozens of studies in right-handers, completely reverses in left-handers.

The study used electroencepahlography (EEG) to compare activity in participants' right- and left hemispheres during rest. After having their brain waves measured, participants completed a survey measuring their level of approach motivation, a core aspect of our personalities. In right-handers, stronger approach motivation was associated with greater activity in the left hemisphere than the right, consistent with previous studies. Left-handers showed the opposite pattern: Approach motivation was associated with greater activity in the right hemisphere than the left.

A New Link Between Motor Action and Emotion

Most cognitive functions do not reverse with handedness. Language, for example, is mainly in the left hemisphere for the majority of right- and left-handers. However, these results were not unexpected.

"We predicted this hemispheric reversal because we observed that people tend to use different hands to perform approach- and avoidance-related actions," says Casasanto. Approach actions are often performed with the dominant hand, and avoidance actions with the nondominant hand.

"Approach motivation is computed by the hemisphere that controls the right hand in right-handers, and by the hemisphere that controls the left hand in left-handers," says Casasanto. "We don't think this is a coincidence. Neural circuits for motivation may be functionally related to circuits that control hand actions – emotion may be built upon neural circuits for action, in evolutionary or developmental time."

The authors caution that these data show a correlation between emotional motivation and motor control, and that further studies are needed to establish a causal link.

0 comments:

bonjour bonne annΓ©e...,

2025 is a mathematical wonder.!! pic.twitter.com/WsUfhKF4C9 — π—Ÿ 𝗼 𝗹 𝗹 π˜‚ 𝗯 𝗲 𝗲 (@Lollubee) December 30, 2024