Sunday, March 18, 2012

software-defined networking

TechnologyReview | Yet today, even with seemingly cost-effective cloud services available from the likes of Amazon, most companies still choose to operate their own computing resources—whether for corporate e-mail or financial trading—as if they were homeowners relying on generators for electricity. One reason they resist cloud computing, Casado says, is that network architecture is too decentralized to reconfigure easily, which leaves the cloud insecure and unreliable. Cloud computing providers tend to run entire data centers on one shared network. If, for example, Coke and Pepsi both entrusted their computer systems to one of today's public cloud services, they might share a network connection, even though their data stores would be carefully kept separate. That could pose a security risk: a hacker who accessed one company's data could see the other's. It would also mean that a busy day for Coke would cause Pepsi's data transfers to slow down.

All of that changes when Nicira's software is installed on the servers in a data center. The software blocks the applications or programs running on the servers from interacting with the surrounding network hardware. A virtual network then takes over to do what a computer network needs to do: it provides a set of connections for the applications to route data through. Nicira's virtual network doesn't really exist, but it's indistinguishable from one made up of physical routers and switches.

To describe the power this gives to cloud administrators, Casado uses a Hollywood reference. "We actually give them the Matrix," he says. The movie's Matrix manipulated the brains of humans floating in tanks to provide the sensation that they were walking, talking, and living in a world that didn't exist. Nicira's version pulls a similar trick on the programs that reside on a server inside a data center, whether they are running a website or a phone app. In practice, this means that administrators can swiftly reprogram the virtual network to offer each application a private connection to the rest of the Internet. That keeps data more secure, and Coke's data crunch would affect Coke alone. It also lets the cloud provider set up automatic controls that compensate for events like sudden spikes in demand.

Ben Horowitz, a partner in the investment firm Andreessen-Horowitz, says he and his partner Marc Andreessen, a cofounder of Netscape, quickly realized that Nicira was delivering something long overdue in computing. "The total lack of innovation in networking compared to operating systems or storage had been bothering us for a while," he says. "It was holding back the industry." After meeting Casado, Horowitz invested in Nicira and joined its board. He saw in Nicira echoes of VMware, a company that helped set off the cloud computing boom and has a market capitalization of $40 billion. VMware's software creates virtual computers inside a server, boosting the efficiency of data centers and driving down the cost of servers. Nicira's software promises a similar instant upgrade to what a data center can do, by removing the efficiency bottleneck imposed by networks.

système D

Black Market
Created by: BusinessDegree.net

doomsday has its day in the sun...,

NYTimes | Television has long been full of “Americans” (“American Restoration,” “American Chopper,” “American Hoggers”) and “Extremes” (“Extreme Marksmen,” “Extreme Makeover,” “Extreme Couponing”) and “Tops” (“Top Gear,” “Top Chef,” “Top Shot”). In recent weeks, though, an interloper has staked a claim: “Doomsday.”

Last month the National Geographic Channel introduced “Doomsday Preppers,” a Tuesday-night reality series about people who are stockpiling, arming and otherwise preparing for some kind of apocalypse. Last week it was the Discovery Channel’s turn. Its new “Doomsday Bunkers,” on Wednesday nights, is about Deep Earth Bunker, a company that builds underground getaways for the types of people seen in “Doomsday Preppers.”

Watch either show for a short while and, unless you’re a prepper yourself, you might be moderately amused at the absurd excess on display and at what an easy target the prepper worldview is for ridicule. Watch a bit longer, though, and amusement may give way to annoyance at how offensively anti-life these shows are, full of contempt for humankind.

“Doomsday Preppers” introduces an array of end-of-civilization types who at first seem surprisingly varied. These preppers live all over the country, in rural areas, suburbs and cities. Each has a different reason for turning a perfectly adequate home into a canned-food warehouse or building an escape hideaway (or bug-out location, to use the prepper term) in the mountains. One expects the North and South Poles to swap places, one a global economic collapse, one “an electromagnetic pulse that will disable the transportation system of the United States.”

But the people on this show and the customers of Deep Earth Bunker are more alike than diverse. Who knows how representative these shows are of the prepper universe, but the people they feature are disproportionately white. They can’t speak for long without employing that cliché involving excrement and a fan. And whatever their religious beliefs might be, something “Preppers” doesn’t generally explore, most of them put their real faith in firearms.

“Preppers” and “Bunkers” are both full of footage of people firing or lovingly cradling their weaponry, which in many cases is frighteningly extensive. (You really don’t want the guy in last week’s “Preppers” living next door; in addition to a house full of ammunition, he has stockpiled 50 gallons of gasoline, an unsettling combination.) One notable exception was Kathy Harrison, a New England woman profiled on a recent “Preppers.”

“It’s easy to feel a little left out of the prepper community if you live in New England and if you’re not fairly right wing and conservative politically,” she said in the segment. “But I just don’t spend my time worrying about stockpiling guns and ammunition, because our security comes not from stockpiling weapons but from having a community that respects each other, supports each other, and we have each others’ backs.”

A noble sentiment. But the unmistakable impression left by these programs is that what these folks want most of all is not to protect their families — the standard explanation for why they’re doing what they’re doing — or even the dubious pleasure of being able to say to the rest of us, “See, I told you the world was going to end.” What they want is a license to open fire.

Saturday, March 17, 2012

are you humans meant to have language and music?



Discover | What do ironing and hang-gliding have in common? Not much really, except that we weren’t designed to do either of them. And that goes for a million other modern-civilization things we regularly do but are not “supposed” to do. We’re fish out of water, living in radically unnatural environments and behaving ridiculously for a great ape. So, if one were interested in figuring out which things are fundamentally part of what it is to be human, then those million crazy things we do these days would not be on the list.

But what would be on the list?

At the top of the list of things we do that we’re supposed to be doing, and that are at the core of what it is to be human rather than some other sort of animal, are language and music. Language is the pinnacle of usefulness, and was key to our domination of the Earth (and the Moon). And music is arguably the pinnacle of the arts. Language and music are fantastically complex, and we’re brilliantly capable at absorbing them, and from a young age. That’s how we know we’re meant to be doing them, i.e., how we know we evolved brains for engaging in language and music.

But what if this gets language and music all wrong? What if we’re not, in fact, meant to have language and music? What if our endless yapping and music-filled hours each day are deeply unnatural behaviors for our species? (What if the parents in Footloose* were right?!)

I believe that language and music are, indeed, not part of our core—that we never evolved by natural selection to engage in them. The reason we have such a head for language and music is not that we evolved for them, but, rather, that language and music evolved—culturally evolved over millennia—for us. Our brains aren’t shaped for these pinnacles of humankind. Rather, these pinnacles of humankind are shaped to be good for our brains.

But how on Earth can one argue for such a view? If language and music have shaped themselves to be good for non-linguistic and amusical brains, then what would their shapes have to be?

They’d have to possess the auditory structure of…nature. That is, we have auditory systems which have evolved to be brilliantly capable at processing the sounds from nature, and language and music would need to mimic those sorts of sounds in order to harness—to “nature-harness,” as I call it—our brain.

And language and music do nature-harness, a case I make in my third book, Harnessed: How Language and Music Mimicked Nature and Transformed Ape to Man (Benbella, 2011). The two most important classes of auditory stimuli for humans are (i) events among objects (most commonly solid objects), and (ii) events among humans (i.e., human behavior). And, in my research I have shown that the signature sounds in these two auditory domains drive the sounds we humans use in (i) speech and (ii) music, respectively. Fist tap Dale.

nigeria: oil cuts as delta erupts



allafrica | As the government contends with a Boko Haram militia determined to make the north ungovernable, a new round of attacks has erupted in the oil-producing Niger Delta.

Apart from the financial damage of a new Delta crisis, it adds to the government's credibility problem. As a government led by Niger Deltans, it was expected to pacify and then start developing the region.

Addressing the ecological and socio-economic devastation in the Delta would realistically take decades; local communities expect their government to make palpable progress with investment and job programmes. There is little sign of that happening: instead, local political feuds and vendettas are being pursued with the help of militant groups. Some of the worst clashes are between rival factions of the governing People's Democratic Party (PDP).

The latest violence there, in President Goodluck Jonathan's political base, threatens the government's amnesty deal with militants and costs the economy as much as a million barrels of oil per day. Nigeria was producing some 2.7 mn. barrels per day in February, compared with its potential of 3.7 mn. bpd. Industry sources say there's no prospect of hitting 3.7 mn. bpd in the near future, mainly because of insecurity.

Over half of production is now offshore and better protected from attack. Now, the rise in piracy in the Gulf of Guinea is also changing security calculations at sea. Of current production, a further 140,000 bpd are lost to elaborate schemes of bunkering and oil theft run by militant groups and pirates, according to Royal Dutch Shell. For now, the biggest pressure is around the onshore oil fields operated by Shell and Chevron. Offshore piracy in the Gulf of Guinea is growing, posing risks to international shipping along one of the continent's busiest routes. Small, agile gangs in speedboats board vessels, raid them for oil and other cargo and move on (AC Vol 52 No 21, From Delta militias to piracy). Insurance premiums are rising. Piracy is an international problem under investigation by the United Nations (AC Vol 52 No 20, The Security Council lands a new African problem).

Uganda, AFRICOM, and the Kony Boogeyman



corbettreport | When oil executives announced the discovery of the largest onshore oil reserves in the Lake Albert region of Uganda in July 2009, the landlocked, oft-neglected East African nation of Uganda went from relative obscurity to a key partner for multi-national oil conglomerates.

Although buoyed by the news, the people of Uganda were naturally cautious, having seen how oil finds in Nigeria and Angola have brought more violence, bloodshed and instability than peace or prosperity.

These worst fears of Ugandans were lent further credence late last year, when President Obama announced he would be deploying US troops on the ground in Uganda, ostensibly to help capture Joseph Kony, the charismatic leader of a small rebel force that has been accused of murders, rapes and kidnaps in Uganda for decades. The timing of the deployment, however, coming at the exact same time as accusations that some of the highest officials in the Ugandan government were guilty of accepting bribes from international oil companies, only further confirmed that the deployment had less to do with Kony, an elusive figure who in fact left Uganda six years ago, and more to do with the securing of American oil interests.

For years, American interests in Africa have been increasingly threatened by China, the resource-hungry fast-growing second-largest economy in the world. America and its allies have noted with increasing dismay China’s growing economic cooperation with Africa, including its vast investment in the infrastructure for oil exploration, drilling and transportation in countries like Libya and Sudan. In recent years, China has been building up its relations with Uganda, and just last month the newly-appointed Chinese ambassador to Uganda, Zhao Yali, announced a series of measures to increase ties with the soon-to-be oil-rich African nation, including the granting of tariff free exports, and investments in transportation projects, power plants, and infrastructure.

But now, just as China makes its overtures toward Uganda to gain a potential toehold in the region and access to the as-yet-untapped oil wealth, a new video about Joseph Kony has suddenly gone viral online, having been viewed 10s of millions of times in just a week, and changing the focus of the American foreign policy debate toward greater US military involvement in oil-rich Uganda. Perhaps unsurprisingly, it suggests that the only way to capture Kony is to maintain an American military presence in the region.

It wasn’t long before Ugandans themselves took to social media to try to inject their own voice into the debate.

But such words of caution have fallen on the deaf ears of a public who believe that the problem of Kony is a simple one requiring an equally simple solution: more American troops. Just this week, a new bill was introduced in Congress that would see an expansion in regional forces in Africa.

What the film’s well-meaning supporters, many of them youth activists rallying behind a political cause for the first time, don’t realize, is that the Kony film, whether wittingly or not, is accomplishing what years of Pentagon propaganda could not muster: public support for an expanded American military role in Africa.

The process of setting up a unified American military command for the continent of Africa began in 2006, with then-Defense Secretary Donald Rumsfeld forming a committee to advise on the formation of AFRICOM. Officially established in October 2008, AFRICOM’s mission statement is to “strengthen our security cooperation with Africa and create new opportunities to bolster the capabilities of our partners in Africa.” In reality, this provides a convenient excuse for maintaining and expanding a permanent American military presence in the region.

Friday, March 16, 2012

mission: mind control



Broadcast by ABC in 1979, this documentary examines our government's (then) 30 year human experimentation for mind control. This is a great investigative report of the mind control efforts from the past and it should make you wonder how our Congress could have dropped the ball in letting this go on after 1977. You won't see this much truth from the mainstream media today.

Fair use reporting.

Now it's 60 + years since the experiments started, mind control has grown much larger & sophisticated with technological advances worse than anything that Orwell ever dreamed of. This video is about how it was back in 1979 after only 30 years of experiments.

how your cat is making you crazy..,

TheAtlantic | No one would accuse Jaroslav Flegr of being a conformist. A self-described “sloppy dresser,” the 53-year-old Czech scientist has the contemplative air of someone habitually lost in thought, and his still-youthful, square-jawed face is framed by frizzy red hair that encircles his head like a ring of fire.

Certainly Flegr’s thinking is jarringly unconventional. Starting in the early 1990s, he began to suspect that a single-celled parasite in the protozoan family was subtly manipulating his personality, causing him to behave in strange, often self-destructive ways. And if it was messing with his mind, he reasoned, it was probably doing the same to others.

The parasite, which is excreted by cats in their feces, is called Toxoplasma gondii (T. gondii or Toxo for short) and is the microbe that causes toxoplasmosis—the reason pregnant women are told to avoid cats’ litter boxes. Since the 1920s, doctors have recognized that a woman who becomes infected during pregnancy can transmit the disease to the fetus, in some cases resulting in severe brain damage or death. T. gondii is also a major threat to people with weakened immunity: in the early days of the AIDS epidemic, before good antiretroviral drugs were developed, it was to blame for the dementia that afflicted many patients at the disease’s end stage. Healthy children and adults, however, usually experience nothing worse than brief flu-like symptoms before quickly fighting off the protozoan, which thereafter lies dormant inside brain cells—or at least that’s the standard medical wisdom.

But if Flegr is right, the “latent” parasite may be quietly tweaking the connections between our neurons, changing our response to frightening situations, our trust in others, how outgoing we are, and even our preference for certain scents. And that’s not all. He also believes that the organism contributes to car crashes, suicides, and mental disorders such as schizophrenia. When you add up all the different ways it can harm us, says Flegr, “Toxoplasma might even kill as many people as malaria, or at least a million people a year.”

An evolutionary biologist at Charles University in Prague, Flegr has pursued this theory for decades in relative obscurity. Because he struggles with English and is not much of a conversationalist even in his native tongue, he rarely travels to scientific conferences. That “may be one of the reasons my theory is not better known,” he says. And, he believes, his views may invite deep-seated opposition. “There is strong psychological resistance to the possibility that human behavior can be influenced by some stupid parasite,” he says. “Nobody likes to feel like a puppet. Reviewers [of my scientific papers] may have been offended.” Another more obvious reason for resistance, of course, is that Flegr’s notions sound an awful lot like fringe science, right up there with UFO sightings and claims of dolphins telepathically communicating with humans.

But after years of being ignored or discounted, Flegr is starting to gain respectability. Psychedelic as his claims may sound, many researchers, including such big names in neuroscience as Stanford’s Robert Sapolsky, think he could well be onto something. Flegr’s “studies are well conducted, and I can see no reason to doubt them,” Sapolsky tells me. Indeed, recent findings from Sapolsky’s lab and British groups suggest that the parasite is capable of extraordinary shenanigans. T. gondii, reports Sapolsky, can turn a rat’s strong innate aversion to cats into an attraction, luring it into the jaws of its No. 1 predator. Even more amazing is how it does this: the organism rewires circuits in parts of the brain that deal with such primal emotions as fear, anxiety, and sexual arousal. “Overall,” says Sapolsky, “this is wild, bizarre neurobiology.” Another academic heavyweight who takes Flegr seriously is the schizophrenia expert E. Fuller Torrey, director of the Stanley Medical Research Institute, in Maryland. “I admire Jaroslav for doing [this research],” he says. “It’s obviously not politically correct, in the sense that not many labs are doing it. He’s done it mostly on his own, with very little support. I think it bears looking at. I find it completely credible.”

What’s more, many experts think T. gondii may be far from the only microscopic puppeteer capable of pulling our strings. “My guess is that there are scads more examples of this going on in mammals, with parasites we’ve never even heard of,” says Sapolsky.

Thursday, March 15, 2012

rhythmodynamics



mirit.ru | Significance of scientific theory is determined by its ability not just to explain logically and clearly what and how happens, but also to show the ways and means of practical application of those ideas the theory expounds. That’s where rhythmodynamics beats all modern hypotheses, theories and paradigms as it reveals the essence, the mechanism of basic phenomena and shows how the new understanding can be applied in concrete areas.

The new revised and extended version of Yuri Ivanov’s book gives a definite model account as to: how systems self-organize; what inside-matter processes trigger and maintain the bodies’ motion by inertia; how bodies in gravitational field form their propensity to free fall; what energy flow is; what the speed of this flow is and what it depends on.

A new understanding of space dimensions is given; the notions of ‘amplitudeless’ and ‘frequency’ space have been introduced and defined; coordinate axes of these dimensions have been introduced too. A possible cause of red shift among distant objects in the Universe (Alice’s effect), and the cause of self-propulsion of isolated molecules are examined.

Besides, interpretation of the results of the famous Michelson’s interferometer experiment is given which is based on the ‘standing waves’ compression’ phenomenon. Application aspects concerning energy production and new ways of motion in space are inspected.

Rhythmodynamics surprising compatibility with other scientific approaches is explained by the absence of unfamiliar or vague notions and ideas in its foundation. Waves and wave sources are present more or less in all known theories of physics, therefore all the effects, phenomena and laws described y rhythmodynamics are automatically true in those theories.

The book is provided with a DVD containing films, a library of rare books, teaching materials and demonstration programs.

About the author: Yuri N. Ivanov, Doctor of Science, Academician of the Russian Academy of Natural Science, Director of the scientific-technical center STC "MIRIT"

Publishing house ‘Energia’, Moscow

field resonance "propulsion" concept



NASA | ABSTRACT - A new propulsion concept has been developed based on a proposed resonance between coherent, pulsed electromagnetic wave forms and gravitational wave forms (or space-time metrics). Using this concept, a spacecraft "propulsion" system potentially capable of galactic and inter-galactic travel without prohibitive "travel times" has been designed. The "propulsion" system utilizes recent research associated with magnetic field line merging, hydromagnetic wave effects, free-electron lasers, laser generation of megagauss fields, and special structural and containment metals. Research required to determine potential, field resonance characteristics and to evaluate various aspects of the spacecraft "propulsion" design is described.

ASSUMPTIONS
The field resonance "propulsion" concept has been developed utilizing recent research into causes of solar flares, magnetic substorms, black holes, quasars, and UFOs.
The concept is based on two assumptions:

(1) Space-time is a "projection" of a higher dimensional space in much the same way that a hologram is a projection or a subset of our space-time reality,
(2) A relationship exists between electromagnetic / hydromagnetic fields and gravitational fields - that is, Einstein's long sought for unified field theory can be developed. Mathematical relationships have been developed and theoretical concepts have been proposed to describe the causes and effects associated with the assumptions, but experimental data is required to develop the correct theoretical basis for the assumptions (Rachman and Dutheil, 1979). Specific research in a number of areas is needed and will be described later.

ASTROPHYSICAL RESEARCH
There does exist, however, some astrophysical data which tends to support these assumptions.

For example, astronomers have speculated that a relationship may exist between black holes and quasars (white holes). The energy and matter which leaves space-time in a black hole may reappear at a white hole at some distant space-time point.
For this transfer of energy from one space-time point to another to occur, some type of hyperspace or higher dimensional space (4th & 5th) is required. Assumption 2 may be the cause of the large amount of energy released in solar flairs.
In sunspot regions where solar flairs occur, the 2-3 thousand gauss magnetic fields are configured such that the positive and negative polarities are in close proximity with each other. Where the positive and negative magnetic field lines are nearly anti-parallel a process called magnetic field line merging can take place.

In this process the oppositely directed field lines break and re-connect expelling fields and plasma out from the sides. As a result magnetic energy is converted into kinetic energy.

The magnetic field line merging process has been proposed as the most likely explanation for solar flare eruptions. However, some flares can release energy which equals 10% of the suns' total output in a second. This large amount of energy is difficult to achieve with the magnetic field line merging concept.

Thus it may be that the configuration of the magnetic fields and associated hydromagnetic waves (oscillation of field lines) may induce a "resonance" with gravitational fields resulting in a release of gravitational as well as magnetic energy.

It is well known that the geometrical relationships of the magnetic fields (and thus the field gradients) are more important to the production of solar flairs than the magnitude of the field strength.

A strongly convoluted boundary between magnetic polarities results in a high probability for large and frequent flares. Another fact of interest is that hydromagnetic waves generated by solar flare have been observed to propagate across the chromospheric surface and trigger flares in other sun spot regions.

Alfven waves, which appear to be the dominant wave form involved, change only the geometry of the field lines. This effect also indicates that the initiation of solar flares definitely depends on geometrical relationships as do the properties of space-time and gravitational fields.

Magnetic field line merging has also been used to explain the interaction of the solar wind (and associated fields) with the Earth's magnetic fields at the magnetopause and the generation of magnetic substorms which often are triggered by solar flairs.

The magnetic fields line merging process is also an essential part of the field resonance "propulsion" concept.

Wednesday, March 14, 2012

spontaneous energy focusing in fluids and solids



ucla |A spectacular example is provided by sonoluminescence which is the phenomenon where by sound is channelled into light. In this effect a diffuse uniformly applied sound wave propagating through water can be observed to spontaneously focus its energy by over a factor of one trillion to generate a very short flash of ultraviolet light. A similar effect can be observed in the flow of water through a converging pipe. At flows which achieve velocity variations of about a meter/second bubbles form in the constriction and then emit picosecond bursts of ultraviolet light as they collapse downstream [flow cavitation].
Another example of energy focusing relates to the everday experience of generating a spark upon touching a door-knob after rubbing one's shoes on a carpet. In the laboratory a controlled realization of frictional-electricity is realized by moving glass relative to mercury. A motion of only a millimeter per second leads to the repetitive acceleration of electrons to at least 1% of the speed of light. Furthermore these electrons are emitted in bursts which are again measured in picoseconds.
Turbulence is another well known example of energy focusing. Here the phenomenon is referred to as intermittency. When a fluid is sufficiently agitated so that the effects of nonlinear dynamics overwhelm the damping effects of viscosity the motion becomes turbulent. The turbulence is not uniform being characterized by regions of unexpectedly violent and quiescent motion.
We also believe that the commonplace effect of friction is an example of the concentration of energy density, or stress. Here a pressure that is uniformly applied to a macroscopic body focuses down to tiny junctions where it reaches levels of one million atmospheres.
None of the above problems has been explained nor is there a generic understanding of the tendency of nature to form structures and focus energy off-equilibrium. In some instances models with many input effects have been generated that can parametrize a portion of the existing data, but these models become quite weak when challenged to make a prediction.
Finally it must be emphasized that these unsolved problems in physics are fundamental. Since no-one has yet succeeded to derive fluid mechanics from the first principles of quantum mechanics [or Newton's Laws] these emergent theories are, as my thesis adviser George E. Uhlenbeck was fond of emphasizing, just as fundamental as the reductionist's so-called first principles of physics.

how acoustic levitation works



howstuffworks | Unless you travel into the vacuum of space, sound is all around you every day. But most of the time, you probably don't think of it as a physical presence. You hear sounds; you don't touch them. The only exceptions may be loud nightclubs, cars with window-rattling speakers and ultrasound machines that pulverize kidney stones. But even then, you most likely don't think of what you feel as sound itself, but as the vibrations that sound creates in other objects.

The idea that something so intangible can lift objects can seem unbelievable, but it's a real phenomenon. Acoustic levitation takes advantage of the properties of sound to cause solids, liquids and heavy gases to float. The process can take place in normal or reduced gravity. In other words, sound can levitate objects on Earth or in gas-filled enclosures in space.

To understand how acoustic levitation works, you first need to know a little about gravity, air and sound. First, gravity is a force that causes objects to attract one another. The simplest way to understand gravity is through Isaac Newton's law of universal gravitation. This law states that every particle in the universe attracts every other particle. The more massive an object is, the more strongly it attracts other objects. The closer objects are, the more strongly they attract each other. An enormous object, like the Earth, easily attracts objects that are close to it, like apples hanging from trees. Scientists haven't decided exactly what causes this attraction, but they believe it exists everywhere in the universe.

Second, air is a fluid that behaves essentially the same way liquids do. Like liquids, air is made of microscopic particles that move in relation to one another. Air also moves like water does -- in fact, some aerodynamic tests take place underwater instead of in the air. The particles in gasses, like the ones that make up air, are simply farther apart and move faster than the particles in liquids.

Third, sound is a vibration that travels through a medium, like a gas, a liquid or a solid object. A sound's source is an object that moves or changes shape very rapidly. For example, if you strike a bell, the bell vibrates in the air. As one side of the bell moves out, it pushes the air molecules next to it, increasing the pressure in that region of the air. This area of higher pressure is a compression. As the side of the bell moves back in, it pulls the molecules apart, creating a lower-pressure region called a rarefaction. The bell then repeats the process, creating a repeating series of compressions and rarefactions. Each repetition is one wavelength of the sound wave.

The sound wave travels as the moving molecules push and pull the molecules around them. Each molecule moves the one next to it in turn. Without this movement of molecules, the sound could not travel, which is why there is no sound in a vacuum.

The Physics of Sound Levitation
A basic acoustic levitator has two main parts -- a transducer, which is a vibrating surface that makes sound, and a reflector. Often, the transducer and reflector have concave surfaces to help focus the sound. A sound wave travels away from the transducer and bounces off the reflector. Three basic properties of this traveling, reflecting wave help it to suspend objects in midair.

First, the wave, like all sound, is a longitudinal pressure wave. In a longitudinal wave, movement of the points in the wave is parallel to the direction the wave travels. It's the kind of motion you'd see if you pushed and pulled one end of a stretched Slinky. Most illustrations, though, depict sound as a transverse wave, which is what you would see if you rapidly moved one end of the Slinky up and down. This is simply because transverse waves are easier to visualize than longitudinal waves.

Second, the wave can bounce off of surfaces. It follows the law of reflection, which states that the angle of incidence -- the angle at which something strikes a surface -- equals the angle of reflection -- the angle at which it leaves the surface. In other words, a sound wave bounces off a surface at the same angle at which it hits the surface. A sound wave that hits a surface head-on at a 90 degree angle will reflect straight back off at the same angle. The easiest way to understand wave reflection is to imagine a Slinky that is attached to a surface at one end. If you picked up the free end of the Slinky and moved it rapidly up and then down, a wave would travel the length of the spring. Once it reached the fixed end of the spring, it would reflect off of the surface and travel back toward you. The same thing happens if you push and pull one end of the spring, creating a longitudinal wave.

Finally, when a sound wave reflects off of a surface, the interaction between its compressions and rarefactions causes interference. Compressions that meet other compressions amplify one another, and compressions that meet rarefactions balance one another out. Sometimes, the reflection and interference can combine to create a standing wave. Standing waves appear to shift back and forth or vibrate in segments rather than travel from place to place. This illusion of stillness is what gives standing waves their name.

Standing sound waves have defined nodes, or areas of minimum pressure, and antinodes, or areas of maximum pressure. A standing wave's nodes are at the heart of acoustic levitation. Imagine a river with rocks and rapids. The water is calm in some parts of the river, and it is turbulent in others. Floating debris and foam collect in calm portions of the river. In order for a floating object to stay still in a fast-moving part of the river, it would need to be anchored or propelled against the flow of the water. This is essentially what an acoustic levitator does, using sound moving through a gas in place of water.

By placing a reflector the right distance away from a transducer, the acoustic levitator creates a standing wave. When the orientation of the wave is parallel to the pull of gravity, portions of the standing wave have a constant downward pressure and others have a constant upward pressure. The nodes have very little pressure.

In space, where there is little gravity, floating particles collect in the standing wave's nodes, which are calm and still. On Earth, objects collect just below the nodes, where the acoustic radiation pressure, or the amount of pressure that a sound wave can exert on a surface, balances the pull of gravity.

thermoacoustics



wikipedia | Thermoacoustic engines (sometimes called "TA engines") are thermoacoustic devices which use high-amplitude sound waves to pump heat from one place to another, or conversely use a heat difference to induce high-amplitude sound waves. In general, thermoacoustic engines can be divided into standing wave and travelling wave devices. These two types of thermoacoustics devices can again be divided into two thermodynamic classes, a prime mover (or simply heat engine), and a heat pump. The prime mover creates work using heat, whereas a heat pump creates or moves heat using work. Compared to vapor refrigerators, thermoacoustic refrigerators have no ozone-depleting or toxic coolant and few or no moving parts therefore require no dynamic sealing or lubrication.

wikipedia | The Stirling cycle is a thermodynamic cycle that describes the general class of Stirling devices. This includes the original Stirling engine that was invented, developed and patented in 1816 by Reverend Dr. Robert Stirling with help from his brother, an engineer.[1]

The cycle is reversible, meaning that if supplied with mechanical power, it can function as a heat pump for heating or refrigeration cooling, and even for cryogenic cooling. The cycle is defined as a closed-cycle regenerative cycle with a gaseous working fluid. "Closed-cycle" means the working fluid is permanently contained within the thermodynamic system. This also categorizes the engine device as an external heat engine. "Regenerative" refers to the use of an internal heat exchanger called a regenerator which increases the device's thermal efficiency.

The cycle is the same as most other heat cycles in that there are four main processes: 1.Compression, 2. heat-addition, 3. expansion and 4. heat removal. However, these processes are not discrete, but rather the transitions overlap.

tubes vs. transistors: is there an audible difference?



milbert |ABSTRACT - Engineers and musicians have long debated the question of tube sound versus transistor sound. Previous attempts to measure this difference have always assumed linear operation of the test amplifier. This conventional method of frequency response, distortion and noise measurement has shown that no significant difference exists. This paper, however, points out that amplifiers are often severely overloaded by signal transients (THD 30%). Under this condition there is a major difference in the harmonic distortion components of the amplified signal, with tubes, transistors, and operational amplifiers separating into distinct groups.

INTRODUCTION
As recording engineers we became directly involved with the tube sound versus transistor sound controversy as it related to pop recording. The difference became markedly noticeable as more solid-state consoles made their appearance. Of course there are so many sound problems related to studio acoustics that electronic problems are generally considered the least of one's worries. After acoustically rebuilding several studios, however, we began to question just how much of a role acoustics played.

During one session in a studio notorious for bad sound we plugged the microphones into Ampex portable mixers instead of the regular console. The change in sound quality was nothing short of incredible. All the acoustic changes we had made in that studio never had brought about the vast improvement in the sound that a single change in electronics had. Over a period of several years we continued this rather informal investigation of the electronic sound problem. In the past, we have heard many widely varied theories that explain the problem, but no one, however, could actually measure it in meaningful terms.

PSYCHOACOUSTICS
Anyone who listens to phonograph records closely can tell that tubes sound different from transistors. Defining what this difference is, however, is a complex psychoacoustical problem. Any investigation of this admittedly subtle phenomenon must really begin with a few human observations. Some people try to point out and describe valid differences. Others just object to the entire thesis and resort to spouting opinions. It is the listener's job to sort out the facts from the fiction.

Electrical engineers, especially the ones who design recording equipment, can prove that there is no difference in tube or transistor sound. They do this by showing the latest specification sheets and quoting electronic figures which are visually quite impressive. It is true, according to the parameters being measured, that there is only a marginal difference in the signal quality. But are there some important parameters which are not being measured? One engineer who admits that there might be some marginal difference in the sound, says, "You just have to get used to the nice clean sound of transistors. What you've been listening to on tubes is a lot of distortion." Of course the question which comes to mind is: What is this distortion and how is it measured?

Psychoacoustically, musicians make more objective subjects than engineers. While their terms may not be expressed in standard units, the musician's "by ear" measuring technique seems quite valid. Consider the possibility that the ear's response may be quite different than an oscilloscope's.

"Tube records have more bass....The bass actually sounds an octave lower," says one rock guitarist. A couple of professional studio players have pointed out on numerous occasions that the middle range of tube recordings is very clear, each instrument has presence, even at very low playback levels. Transistor recordings tend to emphasize the sibilants and cymbals, especially at low levels. "Transistor recordings are very clean but they lack the 'air' of a good tube recording." "With tubes there is a space between the instruments even when they play loud...transistors make a lot of buzzing." Two people commented that transistors added a lot of musically unrelated harmonics or white noise, especially on attack transients. This same phenomenon was expressed by another person as a "shattered glass" sound that restricted the dynamics. It was generally agreed that tubes did not have this problem because they overload gently. Finally, according to one record producer, "Transistor records sound restricted like they're under a blanket. Tube records jump out of the speaker at you....Transistors have highs and lows but there is no punch to the sound."

When we heard an unusually loud and clear popular-music studio recording, we tried to trace its origin. In almost every case we found that the recording console had vacuum-tube preamplifiers. We are specific in mentioning preamplifiers because in many cases we found hybrid systems. Typically this is a three- or four-track console that is modified with solid-state line amplifiers to feed a solid-state eight- or sixteen-track tape machine. Our extensive checking has indicated only two areas where vacuum-tube circuitry makes a definite audible difference in the sound quality: microphone preamplifiers and power amplifiers driving speakers or disc cutters. Both are applications where there is a mechanical-electrical interface.

As the preliminary basis for our further investigation we decided to look into microphone and preamplifier signal levels under actual studio operating conditions. Hoping to find some clues here we would then try to carry this work further and relate electrical operating conditions to acoustically subjective sound colorations. Our search through published literature showed that little work bas been undertaken in this area. Most microphone manufacturers publish extensive data on output levels under standard test conditions [1], but this is rather hard to convert to terms of microphone distances and playing volumes. Preamplifier circuit design is well covered for noise considerations [2], but not from the standpoint of actual microphone operating levels. Distortion has been treated in numerous ways [3-5], but with very few references to musical sound quality [10].

Tuesday, March 13, 2012

the "religious" interpretation of this construction is mind-numbing...,



BBC | Seventeen lost pyramids are among the buildings identified in a new satellite survey of Egypt.

More than 1,000 tombs and 3,000 ancient settlements were also revealed by looking at infra-red images which show up underground buildings.

Initial excavations have already confirmed some of the findings, including two suspected pyramids.

The work has been pioneered at the University of Alabama at Birmingham by US Egyptologist Dr Sarah Parcak.

She says she was amazed at how much she and her team has found.

"We were very intensely doing this research for over a year. I could see the data as it was emerging, but for me the "Aha!" moment was when I could step back and look at everything that we'd found and I couldn't believe we could locate so many sites all over Egypt.

"To excavate a pyramid is the dream of every archaeologist," she said.

The team analysed images from satellites orbiting 700km above the earth, equipped with cameras so powerful they can pin-point objects less than 1m in diameter on the earth's surface.

Infra-red imaging was used to highlight different materials under the surface.

advanced engineering in the temples of the pharoahs...,



gizapower | What does the face of Ramses have in common with a modern precision engineering object, such as an automobile? It has flowing contours with distinct features that are perfectly mirrored one side to the other. The fact that one side of Ramses face is a perfect mirror image to the other implies that precise measurements had to have been used in its creation. It means that the statue was carved in intricate detail to create precise three-dimensional surfaces. The jaw-lines, eyes, nose and mouth are symmetrical and were created using a geometric scheme that embodies the Pythagorean Triangle as well as the Golden Rectangle and Golden Triangle. Encoded in the granite is the sacred geometry of the ancients.

When I was researching for my book, The Giza Power Plant, I had my first encounter with Ramses the Great. This was at the open air museum at Memphis. It was in 1986 and my interest was mostly engineering and the pyramids, so I was not necessarily interested in statues or visiting the temples in the south. It struck me as peculiar at the time, though, that while looking down the length of the 300 ton Ramses statue I noticed that the nostrils were identically shaped and symmetrical. The significance of this feature gained more prominence when I eventually visited the temples in 2004 and became fascinated with the three-dimensional perfection of the Ramses statues at Luxor. This fascination prompted me to gather digital images so that I could examine some of the features of Ramses in the computer. What I discovered was remarkable in that the images revealed a much higher level of manufacturing technology than what has been discussed previously.

In gathering the images of Ramses, it was important that the camera was oriented along the central axis of the head. This way the distribution of material on the left and right side was equal. In order to compare one side of the face to the other, a copy of the image was made, flipped horizontally and made 50% transparent. Then the reverse image was positioned over the original to compare the two sides. The results are remarkable. The stunning implications are analogous to looking through the static interference pattern of time and confusion and seeing the elegance and precision that is normally built into a Lexus in a place where only the most rudimentary techniques of manufacturing are thought to have existed. The techniques that the ancient Egyptians are supposed to have used—those taught us in school—would not produce the precision of a Model T Ford, let alone a Lexus or a Porsche.

We know that the ancient Egyptians used a grid in their designs, and that such a method or technique for design is intuitively self-evident. It does not require a quantum leap of an artisan’s imagination to arrive at what is today a common design method. In fact, it is used now not just for design, but also for describing organizational and conceptual methodology. Grids, graphs, and charts are used to convey information and to plot and organize work.

With this in mind, therefore, I took the photograph of Ramses and laid a grid over it. Of course, my first task was to establish the size and number of the cells used in the grid. I assumed that the features of the face would lead me to the answer, and studied which features were most prominent. After musing over this puzzle for a while, I took a chance on a grid that was based on the dimensions of the mouth. It seemed to me that the mouth had something to tell us due to its unnaturally upturned shape, so I placed a grid with cell dimensions that were the same height and half the width of the dimensions of the mouth. It was then a simple matter to generate circles based on the geometry of the facial features. I didn’t expect, though, that they would line up with grid lines in so many locations. In fact, I was astounded by this discovery. Going through my mind was: “Okay—now when does this cease to be a coincidence and become a reflection of truth?”

Plumbing the grid for further information, I discovered that Ramses’ mouth had the same proportions as a classic 3-4-5 right triangle. The idea that the ancient Egyptians had known about the Pythagorean triangle before Pythagoras, and they may have even taught Pythagoras its concepts, has been discussed by scholars, though not without controversy. Ramses presented me with a grid based on the Pythagorean triangle, whether it was the ancient Egyptians’ intentions or not. As we can see in figure 5, the Pythagorean grid allows us to analyze the face as it has never been analyzed before.

The Ramses geometry and precision and the discovery of tool marks on some of the statues are discussed at greater length in Lost Technologies of Ancient Egypt. Small seemingly insignificant mistakes made by ancient tools bring to light information from which a precise controlled method of manufacture can be discerned.

Other remarkable features of machining on granite are also examined, but probably the most stunning example of ancient machining lies on a wind-swept hill 5 miles from the Giza Plateau. Abu Roash has recently been advertised as the “Lost Pyramid” by Zahi Hawass, the secretary general of the Egyptian Supreme Council of Antiquities, even though it has been well known and written about for many years. I wasn’t expecting much when I first visited the site in February 2006, but what I found was a piece of granite so remarkable that I returned to that site 3 more times to show witnesses in order to explain its unique features. Those who accompanied me on different occasions were David Childress, Judd Peck, Edward Malkowski, Dr. Arlan Andrews and Dr. Randall Ashton. Edward Malkowski immediately dubbed the stone the new rose-red Rosetta Stone. Mechanical engineer Arlan Andrews independently came to the same conclusion.

Monday, March 12, 2012

occupy as a business model...,

aljazeera |Last week I discussed the value crisis of contemporary capitalism: the broken feedback loop between the productive publics who create exponentially increasing use value, and those who capture this value through social media - but do not return these income streams to the value "produsers".

In other words, the current so-called "knowledge economy" is a sham and a pipe dream - because abundant goods do not fare well in a market economy. For the sake of the world's workers, who live in an increasingly precarious situation, is there a way out of this conundrum? Can we restore the broken feedback loop?

Strangely enough, the answer may be found in the recent political movement that is Occupy, because along with "peer producing their political commons", they also exemplified new business and value practices. These practices were, in fact, remarkably similar to the institutional ecology that is already practiced in producing free software and open hardware communities. This is not a coincidence.

Let's look back at the workings of Occupy Wall Street at Zuccotti Park, when it was still in operation in the autumn. At its centre was a productive public, reaching consensus through the General Assembly and offering all kinds of templates ("Mic Check", "Protest Camping", "Working Groups", et cetera) which, in a true open-source way, could be copied and practiced by similar communities the world over, but also modified to suit local needs.

This community had all kinds of needs: physical needs, such as food, shelter and healthcare. Did they resort to the market economy for this?

The answer isn't a simple yes or no. Occupy Wall Street set up working groups to find solutions to their physical needs. The economy was considered as a provisioning system (as explained in Marvin Brown's wonderful book, Civilising the Economy), and it was the "citizens", organised in these working groups, who decided which provisioning system was appropriate given their ethical values.

For example, organic farmers from Vermont provided free food to the campers, but this had a negative side effect: the local street vendors, generally poor immigrants, did not fare too well with everyone getting free food. The occupiers cared about the vendors and so they set up an Occupy Wall Street Vendor Project, which raised funds to buy food from the vendors.

Bingo: in one swoop, OWS created a well-functioning ethical economy that included a market dynamic, but that also functioned in harmony with the value system of the occupiers. What is crucial here is that it was the citizens who decided on the most appropriate provisioning system - and not the property and money owners in an economy divorced from ethical values. Fist tap Arnach.

why the american empire was destined to collapse...,

alternet | Author and social critic Morris Berman says the fact that we're a nation of hustlers lies at the root of our decline. Several years after the Wall Street-ignited crisis began, the nation’s top bank CEOs (who far out-accumulated their European and other international counterparts) continue to hobnob with the president at campaign dinners where each plate costs more than one out of four US households make in a year. Financial bigwigs lead their affluent lives, unaffected, unremorseful, and unindicted for wreaking havoc on the nation. Why? Because they won. They hustled better. They are living the American Dream.

This is not the American Dream that says if you work hard you can be more comfortable than your parents; but rather, if you connive well, game the rules, and rule the game, your take from others is unlimited. In this paradigm, human empathy, caring, compassion, and connection have been devalued from the get-go. This is the flaw in the entire premise of the American Dream: if we can have it all, it must by definition be at someone else’s expense.

In Why America Failed, noted historian and cultural critic Morris Berman’s brilliant, raw and unflinchingly accurate postmortem of America, he concludes that this hustling model, literally woven into the American DNA, doomed the country from the start, and led us inevitably to this dysfunctional point. It is not just the American Dream that has failed, but America itself, because the dream was a mistake in the first place. We are at our core a nation of hustlers; not recently, not sometimes, but always. Conventional wisdom has it that America was predicated on the republican desire to break free from monarchical tyranny, and that was certainly a factor in the War of Independence; but in practical terms, it came down to a drive for "more" -- for individual accumulation of wealth.

So where does that leave us as a country? I caught up with Berman to find out. Fist tap Rembom.

Sunday, March 11, 2012

why anti-authoritarians are diagnosed as mentally ill



madinamerica | In my career as a psychologist, I have talked with hundreds of people previously diagnosed by other professionals with oppositional defiant disorder, attention deficit hyperactive disorder, anxiety disorder and other psychiatric illnesses, and I am struck by (1) how many of those diagnosed are essentially anti-authoritarians, and (2) how those professionals who have diagnosed them are not.

Anti-authoritarians question whether an authority is a legitimate one before taking that authority seriously. Evaluating the legitimacy of authorities includes assessing whether or not authorities actually know what they are talking about, are honest, and care about those people who are respecting their authority. And when anti-authoritarians assess an authority to be illegitimate, they challenge and resist that authority—sometimes aggressively and sometimes passive-aggressively, sometimes wisely and sometimes not.

Some activists lament how few anti-authoritarians there appear to be in the United States. One reason could be that many natural anti-authoritarians are now psychopathologized and medicated before they achieve political consciousness of society’s most oppressive authorities.

Why Mental Health Professionals Diagnose Anti-Authoritarians with Mental Illness
Gaining acceptance into graduate school or medical school and achieving a PhD or MD and becoming a psychologist or psychiatrist means jumping through many hoops, all of which require much behavioral and attentional compliance to authorities, even to those authorities that one lacks respect for. The selection and socialization of mental health professionals tends to breed out many anti-authoritarians. Having steered the higher-education terrain for a decade of my life, I know that degrees and credentials are primarily badges of compliance. Those with extended schooling have lived for many years in a world where one routinely conforms to the demands of authorities. Thus for many MDs and PhDs, people different from them who reject this attentional and behavioral compliance appear to be from another world—a diagnosable one.

I have found that most psychologists, psychiatrists, and other mental health professionals are not only extraordinarily compliant with authorities but also unaware of the magnitude of their obedience. And it also has become clear to me that the anti-authoritarianism of their patients creates enormous anxiety for these professionals, and their anxiety fuels diagnoses and treatments.

In graduate school, I discovered that all it took to be labeled as having “issues with authority” was to not kiss up to a director of clinical training whose personality was a combination of Donald Trump, Newt Gingrich, and Howard Cosell. When I was told by some faculty that I had “issues with authority,” I had mixed feelings about being so labeled. On the one hand, I found it quite amusing, because among the working-class kids whom I had grown up with, I was considered relatively compliant with authorities. After all, I had done my homework, studied, and received good grades. However, while my new “issues with authority” label made me grin because I was now being seen as a “bad boy,” it also very much concerned me about just what kind of a profession that I had entered. Specifically, if somebody such as myself was being labeled with “issues with authority,” what were they calling the kids I grew up with who paid attention to many things that they cared about but didn’t care enough about school to comply there? Well, the answer soon became clear. Fist tap Dale.

people aren't smart enough for democracy



yahoo | The democratic process relies on the assumption that citizens (the majority of them, at least) can recognize the best political candidate, or best policy idea, when they see it. But a growing body of research has revealed an unfortunate aspect of the human psyche that would seem to disprove this notion, and imply instead that democratic elections produce mediocre leadership and policies.

The research, led by David Dunning, a psychologist at Cornell University, shows that incompetent people are inherently unable to judge the competence of other people, or the quality of those people's ideas. For example, if people lack expertise on tax reform, it is very difficult for them to identify the candidates who are actual experts. They simply lack the mental tools needed to make meaningful judgments.

As a result, no amount of information or facts about political candidates can override the inherent inability of many voters to accurately evaluate them. On top of that, "very smart ideas are going to be hard for people to adopt, because most people don’t have the sophistication to recognize how good an idea is," Dunning told Life's Little Mysteries.

He and colleague Justin Kruger, formerly of Cornell and now of New York University, have demonstrated again and again that people are self-delusional when it comes to their own intellectual skills. Whether the researchers are testing people's ability to rate the funniness of jokes, the correctness of grammar, or even their own performance in a game of chess, the duo has found that people always assess their own performance as "above average" — even people who, when tested, actually perform at the very bottom of the pile.

We're just as undiscerning about the skills of others as about ourselves. "To the extent that you are incompetent, you are a worse judge of incompetence in other people," Dunning said. In one study, the researchers asked students to grade quizzes that tested for grammar skill. "We found that students who had done worse on the test itself gave more inaccurate grades to other students." Essentially, they didn't recognize the correct answer even when they saw it.

The reason for this disconnect is simple: "If you have gaps in your knowledge in a given area, then you’re not in a position to assess your own gaps or the gaps of others," Dunning said. Strangely though, in these experiments, people tend to readily and accurately agree on who the worst performers are, while failing to recognize the best performers.

Fuck Robert Kagan And Would He Please Now Just Go Quietly Burn In Hell?

politico | The Washington Post on Friday announced it will no longer endorse presidential candidates, breaking decades of tradition in a...